1D4: A Versatile Epitope Tag for the Purification and Characterization of Expressed Membrane and Soluble Proteins

  • Laurie L. Molday
  • Robert S. MoldayEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1177)


Incorporation of short epitope tags into proteins for recognition by commercially available monoclonal or polyclonal antibodies has greatly facilitated the detection, characterization, localization, and purification of heterologously expressed proteins for structure–function studies. A number of tags have been developed, but many epitope–antibody combinations do not work effectively for all immunochemical techniques due to the nature of the tag and the specificity of the antibodies. A highly versatile, multipurpose epitope tag is the 9 amino acid C-terminal 1D4 peptide. This peptide tag together with the Rho1D4 monoclonal antibody can be used to detect proteins in complex mixtures by western blotting and ELISA assays, localize proteins in cells by immunofluorescence and immunoelectron microscopic labeling techniques, identify subunits and interacting proteins by co-immunoprecipitation, and purify functionally active proteins including membrane proteins by immunoaffinity chromatography. In this chapter we describe various immunochemical procedures which can be used for the detection, purification and localization of 1D4-tagged proteins for structure–function studies.

Key words

1D4 epitope tag Rho1D4 antibody 1D4-tagged proteins Immunoaffinity chromatography Immunocytochemical localization Co-immunoprecipitation Membrane protein purification Protein expression 



This work was supported by grants from the National Institutes of Health (EY002422-32) and the Canadian Institutes of Health Research (CIHR MOP-106667). RSM is a Canada Research Chair in Vision and Macular Degeneration.


  1. 1.
    Brizzard B (2008) Epitope tagging. Biotechniques 44(5):693–695, doi: 000112841 [pii]  10.2144/000112841
  2. 2.
    Uhlen M (2008) Affinity as a tool in life science. Biotechniques 44(5):649–654, doi: 000112803 [pii]  10.2144/000112803 PubMedCrossRefGoogle Scholar
  3. 3.
    Shevtsova Z, Malik JM, Michel U, Scholl U, Bahr M, Kugler S (2006) Evaluation of epitope tags for protein detection after in vivo CNS gene transfer. Eur J Neurosci 23(8):1961–1969, doi: EJN4725 [pii]  10.1111/j.1460-9568.2006.04725.x
  4. 4.
    Schmidt PM, Sparrow LG, Attwood RM, Xiao X, Adams TE, McKimm-Breschkin JL (2012) Taking down the FLAG! How insect cell expression challenges an established tag-system. PLoS One 7(6):e37779. doi:  10.1371/journal.pone. 0037779 PONE-D-11-23035 [pii]
  5. 5.
    MacKenzie D, Arendt A, Hargrave P, McDowell JH, Molday RS (1984) Localization of binding sites for carboxyl terminal specific anti-rhodopsin monoclonal antibodies using synthetic peptides. Biochemistry 23(26): 6544–6549PubMedCrossRefGoogle Scholar
  6. 6.
    Hodges RS, Heaton RJ, Parker JM, Molday L, Molday RS (1988) Antigen-antibody interaction. Synthetic peptides define linear antigenic determinants recognized by monoclonal antibodies directed to the cytoplasmic carboxyl terminus of rhodopsin. J Biol Chem 263(24): 11768–11775PubMedGoogle Scholar
  7. 7.
    Zhong M, Molday LL, Molday RS (2009) Role of the C terminus of the photoreceptor ABCA4 transporter in protein folding, function, and retinal degenerative diseases. J Biol Chem 284(6):3640–3649, doi: M806580200 [pii]  10.1074/jbc.M806580200 PubMedCrossRefGoogle Scholar
  8. 8.
    Loewen CJ, Moritz OL, Molday RS (2001) Molecular characterization of peripherin-2 and rom-1 mutants responsible for digenic retinitis pigmentosa. J Biol Chem 276(25): 22388–22396, doi:  10.1074/jbc.M011710200M011710200 [pii]
  9. 9.
    Peshenko IV, Olshevskaya EV, Azadi S, Molday LL, Molday RS, Dizhoor AM (2011) Retinal degeneration 3 (RD3) protein inhibits catalytic activity of retinal membrane guanylyl cyclase (RetGC) and its stimulation by activating proteins. Biochemistry 50(44):9511–9519. doi:  10.1021/bi201342b
  10. 10.
    Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28(1):50–61PubMedGoogle Scholar
  11. 11.
    Molday RS, MacKenzie D (1985) Inhibition of monoclonal antibody binding and proteolysis by light-induced phosphorylation of rhodopsin. Biochemistry 24(3):776–781PubMedCrossRefGoogle Scholar
  12. 12.
    Silin VI, Karlik EA, Ridge KD, Vanderah DJ (2006) Development of surface-based assays for transmembrane proteins: selective immobilization of functional CCR5, a G protein-coupled receptor. Anal Biochem 349(2):247–253, doi: S0003-2697(05)00754-2 [pii]  10.1016/j.ab.2005.10.025
  13. 13.
    Wong JP, Reboul E, Molday RS, Kast J (2009) A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins. J Proteome Res 8(5):2388–2396. doi: 10.1021/pr801008c PubMedCrossRefGoogle Scholar
  14. 14.
    Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K + channel Kir2.2. Nature 477(7365):495–498. doi:nature10370 [pii]  10.1038/nature10370
  15. 15.
    Lee SY, Letts JA, MacKinnon R (2009) Functional reconstitution of purified human Hv1 H + channels. J Mol Biol 387(5):1055–1060, doi: S0022-2836(09)00204-6 [pii]  10.1016/j.jmb.2009.02.034 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Tao X, Avalos JL, Chen J, MacKinnon R (2009) Crystal structure of the eukaryotic strong inward-rectifier K + channel Kir2.2 at 3.1 A resolution. Science 326(5960):1668–1674, doi: 326/5960/1668 [pii]  10.1126/science.1180310
  17. 17.
    Quazi F, Lenevich S, Molday RS (2012) ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat Commun 3:925. doi: ncomms1927 [pii]  10.1038/ncomms1927
  18. 18.
    Molday LL, Rabin AR, Molday RS (2000) ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet 25(3):257–258. doi: 10.1038/77004 PubMedCrossRefGoogle Scholar
  19. 19.
    Oprian DD, Molday RS, Kaufman RJ, Khorana HG (1987) Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A 84(24):8874–8878PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Coleman JA, Molday RS (2011) Critical role of the beta-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2. J Biol Chem 286(19):17205–17216. doi:M111.229419 [pii]  10.1074/jbc.M111.229419
  21. 21.
    Chelikani P, Reeves PJ, Rajbhandary UL, Khorana HG (2006) The synthesis and high-level expression of a beta2-adrenergic receptor gene in a tetracycline-inducible stable mammalian cell line. Protein Sci 15(6):1433–1440, doi: 15/6/1433 [pii]  10.1110/ps.062080006 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Standfuss J, Edwards PC, D’Antona A, Fransen M, Xie G, Oprian DD, Schertler GF (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471(7340):656–660. doi: nature09795 [pii]  10.1038/nature09795

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations