Synthesis of Stabilized Alpha-Helical Peptides

  • Federico Bernal
  • Samuel G. Katz
Part of the Methods in Molecular Biology book series (MIMB, volume 1176)


Stabilized alpha-helical (SAH) peptides are valuable laboratory tools to explore important protein–protein interactions. Whereas most peptides lose their secondary structure when isolated from the host protein, stapled peptides incorporate an all-hydrocarbon “staple” that reinforces their natural alpha-helical structure. Thus, stapled peptides retain their functional ability to bind their native protein targets and serve multiple experimental uses. First, they are useful for structural studies such as NMR or crystal structures that map and better define binding sites. Second, they can be used to identify small molecules that specifically target that interaction site. Third, stapled peptides can be used to test the importance of specific amino acid residues or posttranslational modifications to the binding. Fourth, they can serve as structurally competent bait to identify novel binding partners to specific alpha-helical motifs. In addition to markedly improved alpha-helicity, stapled peptides also display resistance to protease cleavage and enhanced cell permeability. Most importantly, they are useful for intracellular experiments that explore the functional consequences of blocking particular protein interactions. Because of their remarkable stability, stapled peptides can be applied to whole-animal, in vivo studies. Here we describe a protocol for the synthesis of a peptide that incorporates an all-hydrocarbon “staple” employing a ring-closing olefin metathesis reaction. With proper optimization, stapled peptides can be a fundamental, accurate laboratory tool in the modern chemical biologist’s armory.

Key words

Stapled peptides NMR Protein–protein interactions Olefin metathesis Alpha helix 


  1. 1.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730, PubMed PMID: 12209152PubMedCrossRefGoogle Scholar
  2. 2.
    Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L (2012) Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 12(5):615–622, PubMed PMID: 22920732PubMedCrossRefGoogle Scholar
  3. 3.
    Guharoy M, Chakrabarti P (2007) Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions. Bioinformatics 23(15):1909–1918, PubMed PMID: 17510165PubMedCrossRefGoogle Scholar
  4. 4.
    Jochim AL, Arora PS (2009) Assessment of helical interfaces in protein-protein interactions. Mol BioSyst 5(9):924–926, PubMed PMID: 19668855PubMedCrossRefGoogle Scholar
  5. 5.
    Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93(1):13–20, PubMed PMID: 8552589. Pubmed Central PMCID: 40170PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 37(4):205–211, PubMed PMID: 14816373. Pubmed Central PMCID: 1063337PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kéri GR, Tóth IN. (2003) Molecular pathomechanisms and new trends in drug research. London; New York: Taylor & Francis xiv, 635Google Scholar
  8. 8.
    Tyndall JD, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105(3):973–999, PubMed PMID: 15755082PubMedCrossRefGoogle Scholar
  9. 9.
    Madani F, Lindberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729, PubMed PMID: 21687343. Pubmed Central PMCID: 3103903PubMedCentralPubMedGoogle Scholar
  10. 10.
    Garner J, Harding MM (2007) Design and synthesis of alpha-helical peptides and mimetics. Organic Biomol Chem 5(22):3577–3585, PubMed PMID: 17971985CrossRefGoogle Scholar
  11. 11.
    Henchey LK, Jochim AL, Arora PS (2008) Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. Curr Opin Chem Biol 12(6):692–697, PubMed PMID: 18793750. Pubmed Central PMCID: 2650020PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S, Fisher J et al (2006) A stapled BID BH3 helix directly binds and activates BAX. Mol Cell 24(2):199–210, PubMed PMID: 17052454PubMedCrossRefGoogle Scholar
  13. 13.
    Schafmeister CE, Po J, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 122(24):5891–5892, PubMed PMID: WOS:000087845700030. EnglishCrossRefGoogle Scholar
  14. 14.
    Brown CJ, Cheok CF, Verma CS, Lane DP (2011) Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci 32(1): 53–62, PubMed PMID: 21145600PubMedCrossRefGoogle Scholar
  15. 15.
    Meyers RA (2004) Encyclopedia of molecular cell biology and molecular medicine, 2nd edn. Weinheim, Wiley-VCH VerlagGoogle Scholar
  16. 16.
    Blackwell HE, Grubbs RH (1998) Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew Chem Int Edit 37(23):3281–3284, PubMed PMID: WOS:000077806300017. EnglishCrossRefGoogle Scholar
  17. 17.
    Blackwell HE, Sadowsky JD, Howard RJ, Sampson JN, Chao JA, Steinmetz WE et al (2001) Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. J Organic Chem 66(16):5291–5302, PubMed PMID: 11485448CrossRefGoogle Scholar
  18. 18.
    Venkatraman J, Shankaramma SC, Balaram P (2001) Design of folded peptides. Chem Rev 101(10):3131–3152, PubMed PMID: 11710065PubMedCrossRefGoogle Scholar
  19. 19.
    Shepherd NE, Hoang HN, Abbenante G, Fairlie DP (2005) Single turn peptide alpha helices with exceptional stability in water. J Am Chem Soc 127(9):2974–2983, PubMed PMID: 15740134PubMedCrossRefGoogle Scholar
  20. 20.
    Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129(9):2456–2457, PubMed PMID: 17284038PubMedCrossRefGoogle Scholar
  21. 21.
    Braun CR, Mintseris J, Gavathiotis E, Bird GH, Gygi SP, Walensky LD (2010) Photoreactive stapled BH3 peptides to dissect the BCL-2 family interactome. Chem Biol 17(12):1325–1333, PubMed PMID: 21168768. Pubmed Central PMCID: 3048092PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Leshchiner ES, Braun CR, Bird GH, Walensky LD (2013) Direct activation of full-length proapoptotic BAK. Proc Natl Acad Sci U S A 110(11):E986–E995, PubMed PMID: 23404709. Pubmed Central PMCID: 3600461PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Metabolism Branch, Center for Cancer Research, National Cancer Institute, US National Institutes of HealthBethesdaUSA
  2. 2.Department of PathologyYale University School of MedicineNew HavenUSA

Personalised recommendations