Advertisement

Enhanced Detection of Small RNAs Using a Nonradioactive Approach

  • Teresa T. Liu
  • Zhihua Li
  • Bino JohnEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1173)

Abstract

Recent advancements in high-throughput sequencing have led to the identification of many new classes of small noncoding RNAs such as endo-siRNAs. Unfortunately, reliable quantification of RNAs by sequencing is difficult due to artifacts arising from various factors involved in cDNA library preparation. Northern blot is one of the leading methods used to confirm the presence of a given RNA sequence because it can accurately quantify the cellular abundance, the size of the small RNA and reveal the presence of potential precursors and RNA isoforms. Here, we present a comprehensive description of LNA probe design along with a recently developed highly sensitive and cost-effective nonradioactive northern blot approach termed LED. LED combines a cross-linking method (EDC) and digoxigenin (DIG) labeling, and it can detect small RNAs with concentrations as low as 0.05 fmol and requires as little as a few seconds of membrane exposure for signal generation.

Keywords

Terminal modifications 5′ phosphate Membrane cross-linking Locked nucleic acid probe Nonradioactive detection 

References

  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  2. 2.
    Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103:17337–17342PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar
  4. 4.
    Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214PubMedCrossRefGoogle Scholar
  5. 5.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  6. 6.
    Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336:233–237PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Tuck AC, Tollervey D (2011) RNA in pieces. Trends Genet 27:422–432PubMedCrossRefGoogle Scholar
  9. 9.
    Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10:833–844PubMedCrossRefGoogle Scholar
  10. 10.
    Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional MicroRNAs and endogenousk siRNAs in C. elegans. Cell 127:1193–1207PubMedCrossRefGoogle Scholar
  12. 12.
    Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202PubMedGoogle Scholar
  13. 13.
    Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207PubMedGoogle Scholar
  14. 14.
    Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367PubMedCrossRefGoogle Scholar
  15. 15.
    Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324PubMedCrossRefGoogle Scholar
  16. 16.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–1081PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79PubMedCrossRefGoogle Scholar
  19. 19.
    Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315:241–244PubMedCrossRefGoogle Scholar
  20. 20.
    Chung WJ, Okamura K, Martin R, Lai EC (2008) Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18:795–802PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R, Hannon GJ, Brennecke J (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin H (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103:18002–18007PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69–82PubMedCrossRefGoogle Scholar
  25. 25.
    Shpiz S, Olovnikov I, Sergeeva A, Lavrov S, Abramov Y, Savitsky M, Kalmykova A (2011) Mechanism of the piRNA-mediated silencing of Drosophila telomeric retrotransposons. Nucleic Acids Res 39:8703–8711PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMedCrossRefGoogle Scholar
  27. 27.
    Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296PubMedCrossRefGoogle Scholar
  28. 28.
    Hafner M, Renwick N, Farazi TA, Mihailovic A, Pena JT, Tuschl T (2012) Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods 58:164–170PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kim YK, Heo I, Kim VN (2010) Modifications of small RNAs and their associated proteins. Cell 143:703–709PubMedCrossRefGoogle Scholar
  30. 30.
    Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giraldez AJ (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328:1694–1698PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Li Z, Ender C, Meister G, Moore PS, Chang Y, John B (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 40:6787–6799PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, John B (2010) A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res 38:e98PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computational and Systems BiologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations