Skip to main content

Cell Cycle Regulation by Checkpoints

  • Protocol
  • First Online:
Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1170))

Abstract

Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitchison JM (1990) The fission yeast, Schizosaccharomyces pombe. Bioessays 12(4): 189–191

    Article  CAS  PubMed  Google Scholar 

  2. Mitchison JM, Nurse P (1985) Growth in cell length in the fission yeast Schizosaccharomyces pombe. J Cell Sci 75:357–376

    CAS  PubMed  Google Scholar 

  3. Mitchison JM (1957) The growth of single cells. I. Schizosaccharomyces pombe. Exp Cell Res 13(2):244–262

    Article  CAS  PubMed  Google Scholar 

  4. Fantes PA (1977) Control of cell size and cycle time in Schizosaccharomyces pombe. J Cell Sci 24(51):51–67

    CAS  PubMed  Google Scholar 

  5. Rao PN, Johnson RT (1971) Mammalian cell fusion. IV. Regulation of chromosome formation from interphase nuclei by various chemical compounds. J Cell Physiol 78(2):217–223

    Article  CAS  PubMed  Google Scholar 

  6. Johnson RT, Rao PN, Hughes HD (1970) Mammalian cell fusion. 3. A HeLa cell inducer of premature chromosome condensation active in cells from a variety of animal species. J Cell Physiol 76(2):151–157

    Article  CAS  PubMed  Google Scholar 

  7. Johnson RT, Rao PN (1970) Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature 226(5247):717–722

    Article  CAS  PubMed  Google Scholar 

  8. Rao PN, Johnson RT (1970) Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225(5228): 159–164

    Article  CAS  PubMed  Google Scholar 

  9. Maller JL (1990) MPF and cell cycle control. Adv Second Messenger Phosphoprotein Res 24:323–328

    CAS  PubMed  Google Scholar 

  10. Masui Y (2001) From oocyte maturation to the in vitro cell cycle: the history of discoveries of Maturation-Promoting Factor (MPF) and Cytostatic Factor (CSF). Differentiation 69(1): 1–17

    Article  CAS  PubMed  Google Scholar 

  11. Weinert T, Hartwell L (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317–322

    Article  CAS  PubMed  Google Scholar 

  12. Hartwell L, Weinert T (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  CAS  PubMed  Google Scholar 

  13. O'Connell MJ, Cimprich KA (2005) G2 damage checkpoints: what is the turn-on? J Cell Sci 118(Pt 1):1–6

    Article  PubMed  Google Scholar 

  14. O'Connell MJ, Walworth NC, Carr AM (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol 10(7):296–303

    Article  PubMed  Google Scholar 

  15. Tapia-Alveal C, Calonge TM, O'Connell MJ (2009) Regulation of Chk1. Cell Div 4(1):8

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kuntz K, O'Connell MJ (2009) The G(2) DNA damage checkpoint: could this ancient regulator be the achilles heel of cancer? Cancer Biol Ther 8(15):1433–1439

    Article  CAS  PubMed  Google Scholar 

  17. Hoyt MA, Totis L, Roberts BT (1991) S.cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517

    Article  CAS  PubMed  Google Scholar 

  18. Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    Article  CAS  PubMed  Google Scholar 

  19. Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22(22):R966–R980

    Article  CAS  PubMed  Google Scholar 

  20. Goodarzi AA, Jeggo PA (2013) The repair and signaling responses to DNA double-strand breaks. Adv Genet 82:1–45

    Article  CAS  PubMed  Google Scholar 

  21. Grallert B, Boye E (2008) The multiple facets of the intra-S checkpoint. Cell Cycle 7(15): 2315–2320

    CAS  PubMed  Google Scholar 

  22. Errico A, Costanzo V (2012) Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol 47(3):222–235

    Article  CAS  PubMed  Google Scholar 

  23. Lambert S, Carr AM (2013) Replication stress and genome rearrangements: lessons from yeast models. Curr Opin Genet Dev 23(2): 132–139

    Article  CAS  PubMed  Google Scholar 

  24. Lambert S, Carr AM (2005) Checkpoint responses to replication fork barriers. Biochimie 87(7):591–602

    Article  CAS  PubMed  Google Scholar 

  25. Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209(1):13–20

    Article  CAS  PubMed  Google Scholar 

  26. Killander D, Zetterberg A (1965) A quantitative cytochemical investigation of the relationship between cell mass and initiation of DNA synthesis in mouse fibroblasts in vitro. Exp Cell Res 40(1):12–20

    Article  CAS  PubMed  Google Scholar 

  27. Killander D, Zetterberg A (1965) Quantitative cytochemical studies on interphase growth. I. Determination of DNA, RNA and mass content of age determined mouse fibroblasts in vitro and of intercellular variation in generation time. Exp Cell Res 38:272–284

    Article  CAS  PubMed  Google Scholar 

  28. Cross F (1988) DAF1, a mutant gene affecting size control, pheromone arrest and cell cycle kinetics of S. cerevisiae. Mol Cell Biol 8: 4675–4684

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB (1988) The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7(13):4335–4346

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Moreno S, Nurse P, Russell P (1990) Regulation of mitosis by cyclic accumulation of p80cdc25 mitotic inducer in fission yeast. Nature 344(6266):549–552

    Article  CAS  PubMed  Google Scholar 

  31. Nurse P (1975) Genetic control of cell size at cell division in yeast. Nature 256:547–551

    Article  CAS  PubMed  Google Scholar 

  32. Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297(5580):395–400

    Article  CAS  PubMed  Google Scholar 

  33. Martin SG, Berthelot-Grosjean M (2009) Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 459(7248):852–856

    Article  CAS  PubMed  Google Scholar 

  34. Moseley JB, Mayeux A, Paoletti A, Nurse P (2009) A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 459(7248):857–860

    Article  CAS  PubMed  Google Scholar 

  35. Al-Khodairy F, Carr AM (1992) DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J 11(4): 1343–1350

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Al-Khodairy F, Fotou E, Sheldrick KS, Griffiths DJF, Lehman AR, Carr AM (1994) Identification and characterisation of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell 5:147–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Enoch T, Carr A, Nurse P (1992) Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev 6:2035–2046

    Article  CAS  PubMed  Google Scholar 

  38. Enoch T, Gould K, Nurse P (1991) Mitotic checkpoint control in fission yeast. Cold Spring Harbor Symp Quant Biol 56:409–416, CSH Laboratory Press

    Article  CAS  PubMed  Google Scholar 

  39. Wang B, Matsuoka S, Carpenter PB, Elledge SJ (2002) 53BP1, a mediator of the DNA damage checkpoint. Science 298(5597):1435–1438

    Article  CAS  PubMed  Google Scholar 

  40. Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D, Bartek J, Jackson SP (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421(6926): 952–956

    Article  CAS  PubMed  Google Scholar 

  41. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421(6926):961–966

    Article  CAS  PubMed  Google Scholar 

  42. Kumagai A, Dunphy WG (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6(4):839–849

    Article  CAS  PubMed  Google Scholar 

  43. Latif C, Elzen NR, O'Connell MJ (2004) DNA damage checkpoint maintenance through sustained Chk1 activity. J Cell Sci 117(Pt 16): 3489–3498

    Article  CAS  PubMed  Google Scholar 

  44. MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA (2007) The structural determinants of checkpoint activation. Genes Dev 21(8):898–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lu X, Nannenga B, Donehower LA (2005) PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19(10):1162–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. den Elzen N, Kosoy A, Christopoulos H, O'Connell MJ (2004) Resisting arrest: recovery from checkpoint arrest through dephosphorylation of Chk1 by PP1. Cell Cycle 3(5): 529–533

    Article  Google Scholar 

  47. den Elzen NR, O'Connell MJ (2004) Recovery from DNA damage checkpoint arrest by PP1-mediated inhibition of Chk1. Embo J 23(4): 908–918

    Article  Google Scholar 

  48. Allen JB, Zhou Z, Siede W, Friedberg E, Elledge S (1994) The SAD1/Rad53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8:2416–2428

    Article  Google Scholar 

  49. Sun Z, Hsiao J, Fay DS, Stern DF (1998) Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281(5374):272–274 [see comments]

    Article  CAS  PubMed  Google Scholar 

  50. Cohen-Fix O, Koshland D (1997) The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc Natl Acad Sci U S A 94(26): 14361–14366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Rieder CL, Cole RW (1998) Entry into mitosis in vertebrate somatic cells is guarded by a chromosome damage checkpoint that reverses the cell cycle when triggered during early but not late prophase. J Cell Biol 142(4):1013–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Zhou Z, Elledge S (1993) DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75:1119–1127

    Article  CAS  PubMed  Google Scholar 

  53. Carvajal LA, Hamard PJ, Tonnessen C, Manfredi JJ (2012) E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression. Genes Dev 26(14):1533–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. St Clair S, Giono L, Varmeh-Ziaie S, Resnick-Silverman L, Liu WJ, Padi A, Dastidar J, DaCosta A, Mattia M, Manfredi JJ (2004) DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter. Mol Cell 16(5): 725–736

    Article  PubMed  Google Scholar 

  55. Carvajal LA, Manfredi JJ (2013) Another fork in the road–life or death decisions by the tumour suppressor p53. EMBO Rep 14(5): 414–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Nordstrom W, Abrams JM (2000) Guardian ancestry: fly p53 and damage-inducible apoptosis. Cell Death Differ 7(11):1035–1038

    Article  CAS  PubMed  Google Scholar 

  57. Nishitani H, Lygerou Z (2004) DNA replication licensing. Front Biosci 9:2115–2132

    Article  CAS  PubMed  Google Scholar 

  58. Xu YJ, Davenport M, Kelly TJ (2006) Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast. Genes Dev 20(8):990–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bailis JM, Luche DD, Hunter T, Forsburg SL (2008) Minichromosome maintenance proteins interact with checkpoint and recombination proteins to promote s-phase genome stability. Mol Cell Biol 28(5):1724–1738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Stead BE, Brandl CJ, Sandre MK, Davey MJ (2012) Mcm2 phosphorylation and the response to replicative stress. BMC Genet 13:36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D (2005) Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol 15(15):1364–1375

    Article  CAS  PubMed  Google Scholar 

  62. Lee KY, Myung K (2008) PCNA modifications for regulation of post-replication repair pathways. Mol Cells 26(1):5–11

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Rhind N, Furnari B, Russell P (1997) Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev 11:504–511

    Article  CAS  PubMed  Google Scholar 

  64. Lindsay HD, Griffiths DJF, Edwards RJ, Christensen PU, Murray JM, Osman F, Walworth N, Carr AM (1998) S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev 12:382–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Zeng Y, Forbes KC, Wu Z, Moreno S, Piwnica-Worms H, Enoch T (1998) Replication checkpoint requires phosphorylation of the phosphatase cdc25 by cds1 or chk1. Nature 395:507–510

    Article  CAS  PubMed  Google Scholar 

  66. Furnari B, Blasina A, Boddy MN, McGowan CH, Russell P (1999) Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1. Mol Biol Cell 10(4):833–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D (1991) mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64(6):1111–1122

    Article  CAS  PubMed  Google Scholar 

  68. Nishitani H, Nurse P (1995) p65cdc18 plays a major role controlling the initiation of DNA replication in fission yeast. Cell 83:397–405

    Article  CAS  PubMed  Google Scholar 

  69. Moreno S, Nurse P (1994) Regulation of progression through the G1 phase of the cell cycle by the rum1 + gene. Nature 367:236–242

    Article  CAS  PubMed  Google Scholar 

  70. Hayles J, Fisher D, Woollard A, Nurse P (1994) Temporal order of S-phase and mitosis in fission yeast is determined by the state of the p34cdc2/mitotic B cyclin complex. Cell 78: 813–822

    Article  CAS  PubMed  Google Scholar 

  71. O'Connell MJ, Nurse P (1994) How cells know they are in G1 or G2. Curr Opin Cell Biol 6(6):867–871

    Article  PubMed  Google Scholar 

  72. Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3(1):E28–E34

    Article  CAS  PubMed  Google Scholar 

  73. McLean JR, Chaix D, Ohi MD, Gould KL (2011) State of the APC/C: organization, function, and structure. Crit Rev Biochem Mol Biol 46(2):118–136

    Article  CAS  PubMed  Google Scholar 

  74. O'Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13(5):221–228

    Article  PubMed  Google Scholar 

  75. Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17(1):60–65

    Article  CAS  PubMed  Google Scholar 

  76. Koniaras K, Cuddihy AR, Christopolous H, Hogg A, O’Connell MJ (2001) Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitises p53 mutant human cells. Oncogene 20:7453–7463

    Article  CAS  PubMed  Google Scholar 

  77. Maugeri-Sacca M, Bartucci M, De Maria R (2013) Checkpoint kinase 1 inhibitors for potentiating systemic anticancer therapy. Cancer Treat Rev 39(5):525–533

    Article  CAS  PubMed  Google Scholar 

  78. Stathis A, Oza A (2010) Targeting Wee1-like protein kinase to treat cancer. Drug News Perspect 23(7):425–429

    CAS  PubMed  Google Scholar 

  79. Walworth N, Davey S, Beach D (1993) Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363:368–371

    Article  CAS  PubMed  Google Scholar 

  80. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12): 1448–1459

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Fogarty P, Campbell SD, Abu-Shumays R, Phalle BS, Yu KR, Uy GL, Goldberg ML, Sullivan W (1997) The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr Biol 7(6):418–426

    Article  CAS  PubMed  Google Scholar 

  82. Greenow KR, Clarke AR, Jones RH (2009) Chk1 deficiency in the mouse small intestine results in p53-independent crypt death and subsequent intestinal compensation. Oncogene 28(11):1443–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Smith J, Larue L, Gillespie DA (2013) Chk1 is essential for the development of murine epidermal melanocytes. Pigment Cell Melanoma Res 26(4):580–585

    Article  CAS  PubMed  Google Scholar 

  84. Lam MH, Liu Q, Elledge SJ, Rosen JM (2004) Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6(1):45–59

    Article  CAS  PubMed  Google Scholar 

  85. Petermann E, Maya-Mendoza A, Zachos G, Gillespie DA, Jackson DA, Caldecott KW (2006) Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol 26(8): 3319–3326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Zachos G, Rainey MD, Gillespie DA (2003) Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO J 22(3):713–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5(10):773–785

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues and collaborators for a stimulating discussion. This work was supported by NIH grants RO1-GM087326 (M.J.O.) and T32-CA078207 (K.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. O’Connell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barnum, K.J., O’Connell, M.J. (2014). Cell Cycle Regulation by Checkpoints. In: Noguchi, E., Gadaleta, M. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 1170. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0888-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0888-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0887-5

  • Online ISBN: 978-1-4939-0888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics