Analyzing DNA Replication Checkpoint in Budding Yeast

  • Nicole Hustedt
  • Kenji ShimadaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1170)


Checkpoints are conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. Cells also possess a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication fork progression. In the budding yeast Saccharomyces cerevisiae, the DNA replication checkpoint controls the timing of S-phase events such as origin firing and spindle elongation. This checkpoint also upregulates dNTP pools and maintains the replication fork structure in order to resume DNA replication after replication block. Many replication checkpoint factors have been found to be tumor suppressors, highlighting the importance of this checkpoint pathway in human health. Here we describe a series of protocols to analyze the DNA replication checkpoint in S. cerevisiae.

Key words

DNA replication checkpoint Mec1 Rad53 Kinase assay Budding yeast 



We thank Dr. Susan M. Gasser for critical reading and helpful suggestions. Support was gratefully received from the Novartis Research Foundation, the Swiss Cancer League, and the FP7 Marie Curie Network, Imaging the DNA Damage Response (Image DDR).


  1. 1.
    Lambert S, Carr AM (2005) Checkpoint responses to replication fork barriers. Biochimie 87(7):591–602PubMedCrossRefGoogle Scholar
  2. 2.
    Friedel AM, Pike BL, Gasser SM (2009) ATR/Mec1: coordinating fork stability and repair. Curr Opin Cell Biol 21(2):237–244PubMedCrossRefGoogle Scholar
  3. 3.
    Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9(8):616–627PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25(5):225–227PubMedCrossRefGoogle Scholar
  5. 5.
    Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548PubMedCrossRefGoogle Scholar
  6. 6.
    MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA (2007) The structural determinants of checkpoint activation. Genes Dev 21(8):898–903PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Majka J, Niedziela-Majka A, Burgers PM (2006) The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 24(6):891–901PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM (2007) The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21(12):1472–1477PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Furuya K, Poitelea M, Guo L, Caspari T, Carr AM (2004) Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1. Genes Dev 18(10):1154–1164PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Lee J, Kumagai A, Dunphy WG (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282(38):28036–28044PubMedCrossRefGoogle Scholar
  11. 11.
    Mordes DA, Glick GG, Zhao R, Cortez D (2008) TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 22(11):1478–1489PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Navadgi-Patil VM, Burgers PM (2009) The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol Cell 36(5):743–753PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Navadgi-Patil VM, Burgers PM (2011) Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase. Biochem Soc Trans 39(2):600–605PubMedCrossRefGoogle Scholar
  14. 14.
    Navadgi-Patil VM, Kumar S, Burgers PM (2011) The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint. J Biol Chem 286(47):40999–41007PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Puddu F, Piergiovanni G, Plevani P, Muzi-Falconi M (2011) Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase epsilon. PLoS Genet 7(3):e1002022PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kumar S, Burgers PM (2013) Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. Genes Dev 27(3):313–321PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Emili A (1998) MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol Cell 2(2):183–189PubMedCrossRefGoogle Scholar
  18. 18.
    de la Torre-Ruiz MA, Green CM, Lowndes NF (1998) RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J 17(9):2687–2698PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Gilbert CS, Green CM, Lowndes NF (2001) Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol Cell 8(1):129–136PubMedCrossRefGoogle Scholar
  20. 20.
    Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D (2005) Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol 15(15):1364–1375PubMedCrossRefGoogle Scholar
  21. 21.
    Sun Z, Hsiao J, Fay DS, Stern DF (1998) Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281(5374):272–274PubMedCrossRefGoogle Scholar
  22. 22.
    Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M (1999) Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J 18(22):6561–6572PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Alcasabas AA, Osborn AJ, Bachant J, Hu F, Werler PJ, Bousset K, Furuya K, Diffley JF, Carr AM, Elledge SJ (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3(11):958–965PubMedCrossRefGoogle Scholar
  24. 24.
    Frei C, Gasser SM (2000) The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev 14(1):81–96PubMedCentralPubMedGoogle Scholar
  25. 25.
    Bjergbaek L, Cobb JA, Tsai-Pflugfelder M, Gasser SM (2005) Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J 24(2):405–417PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Chen SH, Zhou H (2009) Reconstitution of Rad53 activation by Mec1 through adaptor protein Mrc1. J Biol Chem 284(28):18593–18604PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hegnauer AM, Hustedt N, Shimada K, Pike BL, Vogel M, Amsler P, Rubin SM, van Leeuwen F, Guenole A, van Attikum H, Thoma NH, Gasser SM (2012) An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks. EMBO J 31(18):3768–3783PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Zegerman P, Diffley JF (2010) Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467(7314):474–478PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP (2010) Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature 467(7314):479–483PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Cobb JA, Schleker T, Rojas V, Bjergbaek L, Tercero JA, Gasser SM (2005) Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev 19(24):3055–3069PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297(5581):599–602PubMedCrossRefGoogle Scholar
  32. 32.
    Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L (2003) Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112(3):391–401PubMedCrossRefGoogle Scholar
  33. 33.
    Krishnan V, Nirantar S, Crasta K, Cheng AY, Surana U (2004) DNA replication checkpoint prevents precocious chromosome segregation by regulating spindle behavior. Mol Cell 16(5):687–700PubMedCrossRefGoogle Scholar
  34. 34.
    Hustedt N, Gasser SM, Shimada K (2013) Replication checkpoint: tuning and coordination of replication forks in S phase. Genes 4(3):388–434PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Shimada K, Pasero P, Gasser SM (2002) ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev 16(24):3236–3252PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland

Personalised recommendations