Methods for the Study of Long Noncoding RNA in Cancer Cell Signaling

  • Yi Feng
  • Xiaowen Hu
  • Youyou Zhang
  • Dongmei Zhang
  • Chunsheng Li
  • Lin Zhang
Part of the Methods in Molecular Biology book series (MIMB, volume 1165)

Abstract

With the advances in sequencing technology and transcriptome analysis, it is estimated that up to 75 % of the human genome is transcribed into RNAs. This finding prompted intensive investigations on the biological functions of noncoding RNAs and led to very exciting discoveries of microRNAs as important players in disease pathogenesis and therapeutic applications. Research on long noncoding RNAs (lncRNAs) is in its infancy, yet a broad spectrum of biological regulations has been attributed to lncRNAs. Here, we provide a collection of detailed experimental protocols for lncRNA studies, including lncRNA immunoprecipitation, lncRNA pull-down, lncRNA northern blot analysis, lncRNA in situ hybridization, and lncRNA knockdown. We hope that the information included in this chapter can speed up research on lncRNAs biology and eventually lead to the development of clinical applications with lncRNA as novel prognostic markers and therapeutic targets.

Key words

Long noncoding RNA RNA immunoprecipitation RNA pull-down In situ hybridization Northern blot Short hairpin RNA 

Notes

Acknowledgements

This work was supported, in whole or in part, by National Institutes of Health Grant R01CA142776 (L. Zhang), Ovarian Cancer SPORE P50-CA83638-7951 Project 3 (L. Zhang), Department of Defense Grant W81XWH-10-1-0082 (L. Zhang), the Ovarian Cancer Research Fund Tilberis Scholar Award the Basser Research Center grant for BRCA (L. Zhang), and Marsha Rivkin Center for Ovarian Cancer Research (L. Zhang). D. Zhang was supported by the China Scholarship Council.

References

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  2. 2.
    International Human Genome Sequencing, C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRefGoogle Scholar
  3. 3.
    Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166PubMedCrossRefGoogle Scholar
  5. 5.
    Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439PubMedCrossRefGoogle Scholar
  6. 6.
    Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1:391–407PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346PubMedCrossRefGoogle Scholar
  8. 8.
    Spizzo R, Almeida MI, Colombatti A et al (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31:4577–4587PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Pachnis V, Brannan CI, Tilghman SM (1988) The structure and expression of a novel gene activated in early mouse embryogenesis. EMBO J 7:673–681PubMedCentralPubMedGoogle Scholar
  10. 10.
    Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155PubMedCrossRefGoogle Scholar
  11. 11.
    Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349: 38–44PubMedCrossRefGoogle Scholar
  12. 12.
    Kapranov P, Cawley SE, Drenkow J et al (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919PubMedCrossRefGoogle Scholar
  13. 13.
    Rinn JL, Euskirchen G, Bertone P et al (2003) The transcriptional activity of human chromosome 22. Genes Dev 17:529–540PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Maeda N, Kasukawa T, Oyama R et al (2006) Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2:e62PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Jia H, Osak M, Bogu GK et al (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Orom UA, Derrien T, Beringer M et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58PubMedCrossRefGoogle Scholar
  21. 21.
    Prensner JR, Iyer MK, Balbin OA et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29:742–749PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25: 1915–1927PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146: 119–133PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Yap KL, Li S, Munoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kotake Y, Nakagawa T, Kitagawa K et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Grote P, Wittler L, Hendrix D et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214PubMedCrossRefGoogle Scholar
  32. 32.
    Kino T, Hurt DE, Ichijo T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:8Google Scholar
  33. 33.
    Hung T, Wang Y, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39: 925–938PubMedCrossRefGoogle Scholar
  35. 35.
    Bernard D, Prasanth KV, Tripathi V et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Tripathi V, Shen Z, Chakraborty A et al (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9:e1003368PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kim TK, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Wang D, Garcia-Bassets I, Benner C et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390–394PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Melo CA, Drost J, Wijchers PJ et al (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535PubMedCrossRefGoogle Scholar
  41. 41.
    Lai F, Orom UA, Cesaroni M et al (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494:497–501PubMedCrossRefGoogle Scholar
  42. 42.
    Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041PubMedCrossRefGoogle Scholar
  43. 43.
    Yang F, Huo XS, Yuan SX et al (2013) Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 49:1083–1096PubMedCrossRefGoogle Scholar
  44. 44.
    Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42: 1113–1117PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Kretz M, Siprashvili Z, Chu C et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Zhang A, Zhou N, Huang J et al (2013) The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 23:340–350PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Pasmant E, Laurendeau I, Heron D et al (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67:3963–3969PubMedCrossRefGoogle Scholar
  49. 49.
    Yildirim E, Kirby JE, Brown DE et al (2013) Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152:727–742PubMedCrossRefGoogle Scholar
  50. 50.
    Bussemakers MJ, van Bokhoven A, Verhaegh GW et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979PubMedGoogle Scholar
  51. 51.
    Lee GL, Dobi A, Srivastava S (2011) Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol 8:123–124PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yi Feng
    • 1
  • Xiaowen Hu
    • 2
  • Youyou Zhang
    • 2
  • Dongmei Zhang
    • 2
  • Chunsheng Li
    • 2
  • Lin Zhang
    • 2
    • 3
    • 4
  1. 1.Abramson Family Cancer Research Institute, School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  2. 2.Ovarian Cancer Research Center, School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Obstetrics and GynecologySchool of Medicine, University of PennsylvaniaPhiladelphiaUSA
  4. 4.Smilow Center for Translational Research, School of Medicine, University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations