Use of Biguanides to Improve Response to Chemotherapy

  • Vlad C. Sandulache
  • Liangpeng Yang
  • Heath D. SkinnerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1165)


Metformin is a commonly utilized antidiabetic agent, which has been associated with improved clinical outcomes in cancer patients. The precise mechanism of action remains unclear, but preclinical evidence suggests that metformin can sensitize tumor cells to the effects to conventional chemotherapeutic agents and ionizing radiation (IR). In this chapter we discuss the general background of an approach to evaluate the effects of metformin on conventional chemotherapeutic agent toxicity in a preclinical model.

Key words

Metformin Chemotherapy Cancer AMPK Cytotoxicity Apoptosis Senescence Reactive oxygen species (ROS) Metabolism Clonogenic survival 


  1. 1.
    Dunn CJ, Peters DH (1995) Metformin. A review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 49:721–749PubMedCrossRefGoogle Scholar
  2. 2.
    Scheen AJ, Paquot N (2013) Metformin revisited: a critical review of the benefit-risk balance in at-risk patients with type 2 diabetes. Diabetes Metab 39:179–190PubMedCrossRefGoogle Scholar
  3. 3.
    Salpeter S, Greyber E, Pasternak G, Salpeter E (2006) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 1, CD002967PubMedGoogle Scholar
  4. 4.
    Skinner HD, McCurdy MR, Echeverria AE et al (2013) Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol 52:1002–1009PubMedCrossRefGoogle Scholar
  5. 5.
    Skinner HD, Sandulache VC, Ow TJ et al (2012) TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res 18:290–300PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Jiralerspong S, Palla SL, Giordano SH et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Noto H, Goto A, Tsujimoto T, Noda M (2012) Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One 7:e33411PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC (2011) Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 11:20PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bosetti C, Rosato V, Polesel J et al (2012) Diabetes mellitus and cancer risk in a network of case-control studies. Nutr Cancer 64:643–651PubMedCrossRefGoogle Scholar
  10. 10.
    Sandulache VC, Skinner HD, Ow TJ et al (2012) Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status. Cancer 118:711–721PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gallagher EJ, LeRoith D (2011) Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci 1243:54–68PubMedCrossRefGoogle Scholar
  12. 12.
    Rocha GZ, Dias MM, Ropelle ER et al (2011) Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17:3993–4005PubMedCrossRefGoogle Scholar
  13. 13.
    Ben Sahra I, Laurent K, Giuliano S et al (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70:2465–2475PubMedCrossRefGoogle Scholar
  14. 14.
    Erices R, Bravo ML, Gonzalez P et al (2013) Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells. Reprod Sci 20(1433):1446Google Scholar
  15. 15.
    Smith MA, Houghton P (2013) A proposal regarding reporting of in vitro testing results. Clin Cancer Res 19:2828–2833PubMedCrossRefGoogle Scholar
  16. 16.
    Bardin C, Nobecourt E, Larger E, Chast F, Treluyer JM, Urien S (2012) Population pharmacokinetics of metformin in obese and non-obese patients with type 2 diabetes mellitus. Eur J Clin Pharmacol 68:961–968PubMedCrossRefGoogle Scholar
  17. 17.
    Charles B, Norris R, Xiao X, Hague W (2006) Population pharmacokinetics of metformin in late pregnancy. Ther Drug Monit 28:67–72PubMedCrossRefGoogle Scholar
  18. 18.
    Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y (2003) Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 63:844–848PubMedCrossRefGoogle Scholar
  19. 19.
    Davidoff F (1968) Effects of guanidine derivatives on mitochondrial function. II. Reversal of guanidine-derivative inhibiton by free fatty acids. J Clin Invest 47:2344–2358PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Davidoff F (1968) Effects of guanidine derivatives on mitochondrial function. I. Phenethylbiguanide inhibition of respiration in mitochondria from guinea pig and rat tissues. J Clin Invest 47:2331–2343PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Davidoff F (1971) Effects of guanidine derivatives on mitochondrial function. 3. The mechanism of phenethylbiguanide accumulation and its relationship to in vitro respiratory inhibition. J Biol Chem 246:4017–4027PubMedGoogle Scholar
  22. 22.
    Zhang L, He H, Balschi JA (2007) Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol 293:H457–H466PubMedCrossRefGoogle Scholar
  23. 23.
    Ota S, Horigome K, Ishii T et al (2009) Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun 388:311–316PubMedCrossRefGoogle Scholar
  24. 24.
    Guigas B, Detaille D, Chauvin C et al (2004) Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 382:877–884PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Batandier C, Guigas B, Detaille D et al (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38:33–42PubMedCrossRefGoogle Scholar
  26. 26.
    Beeson CC, Beeson GC, Schnellmann RG (2010) A high-throughput respirometric assay for mitochondrial biogenesis and toxicity. Anal Biochem 404:75–81PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ouslimani N, Peynet J, Bonnefont-Rousselot D, Therond P, Legrand A, Beaudeux JL (2005) Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 54:829–834PubMedCrossRefGoogle Scholar
  28. 28.
    Piwkowska A, Rogacka D, Jankowski M, Dominiczak MH, Stepinski JK, Angielski S (2010) Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem Biophys Res Commun 39:268–273CrossRefGoogle Scholar
  29. 29.
    Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72PubMedCrossRefGoogle Scholar
  30. 30.
    Storozhuk Y, Hopmans SN, Sanli T et al (2013) Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer 108:2021–2032PubMedCrossRefGoogle Scholar
  31. 31.
    An D, Kewalramani G, Chan JK et al (2006) Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia 49:2174–2184PubMedCrossRefGoogle Scholar
  32. 32.
    Silva FM, da Silva MH, Bracht A, Eller GJ, Constantin RP, Yamamoto NS (2010) Effects of metformin on glucose metabolism of perfused rat livers. Mol Cell Biochem 340:283–289PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vlad C. Sandulache
    • 1
  • Liangpeng Yang
    • 2
  • Heath D. Skinner
    • 2
    Email author
  1. 1.Bobby R. Alford Department of Otolaryngology—Head and Neck SurgeryBaylor College of MedicineHoustonUSA
  2. 2.Department of Radiation OncologyThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations