Skip to main content

Approaches for Classifying DNA Variants Found by Sanger Sequencing in a Medical Genetics Laboratory

  • Protocol
  • First Online:
Clinical Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1168))

Abstract

Diagnostic applications of DNA sequencing technologies present a powerful tool for the clinical management of patients. Applications range from better diagnostic classification to identification of therapeutic options, prediction of drug response and toxicity, and carrier testing. Although the advent of massively parallel sequencing technologies has increased the complexity of clinical interpretation of sequence variants by an order of magnitude, the annotation and interpretation of the clinical effects of identified genomic variants remain a challenge regardless of the sequencing technologies used to identify them. Here, we survey methodologies which assist in the diagnostic classification of DNA variants and propose a practical decision analytic protocol to assist in the classification of sequencing variants in a clinical setting. The methods include database queries, software tools for protein consequence, evolutionary conservation and pathogenicity prediction, familial segregation, case–control studies, and literature review. These methods are deliberately pragmatic as diagnostic constraints of clinically useful turnaround times generally preclude obtaining evidence from in vivo or in vitro functional experiments for variant assessment. Clinical considerations require that variant classification is stringent and rigorous, as misinterpretation may lead to inappropriate clinical consequences; thus, multiple parameters and lines of evidence are considered to determine potential biological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HGMD:

Human Gene Mutation Database

NCBI:

National Center for Biotechnology Information

NG:

Genomic

NM:

mRNA

NP:

Protein from RefSeq database

VUS:

Variant of unknown significance

References

  1. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12

    Article  Google Scholar 

  2. Burset M, Seledtsov IA, Solovyev VV (2000) Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28:4364–4375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chretien S, Dubart A, Beaupain D et al (1988) Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci U S A 85:6–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gouya L, Puy H, Robreau AM et al (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wild-type FECH. Nat Genet 30:27–28

    Article  CAS  PubMed  Google Scholar 

  5. Wu K, Hinson SR, Ohashi A et al (2005) Functional evaluation and cancer risk assessment of BRCA2 unclassified variants. Cancer Res 65:417–426

    CAS  PubMed  Google Scholar 

  6. Clegg JB, Weatherall DJ (1974) Hemoglobin constant spring, and unusual alpha-chain variant involved in the etiology of hemoglobin H disease. Ann N Y Acad Sci 232:168–178

    Article  CAS  PubMed  Google Scholar 

  7. Jensen HK, Jensen TG, Faergeman O et al (1997) Two mutations in the same low-density lipoprotein receptor allele act in synergy to reduce receptor function in heterozygous familial hypercholesterolemia. Hum Mutat 9:437–444

    Article  CAS  PubMed  Google Scholar 

  8. Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34:460–463

    Article  CAS  PubMed  Google Scholar 

  9. Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Schultz J, Milpetz F, Bork P et al (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Marchler-Bauer A, Anderson JB, Chitsaz F et al (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205–D210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tavtigian SV, Greenblatt MS, Lesueur F et al (2008) In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29:1327–1336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pollard KS, Hubisz MJ, Rosenbloom KR et al (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:110–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Siepel A, Bejerano G, Pedersen JS et al (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ng PC, Henikoff S (2002) Accounting for human polymorphisms predicted to affect protein function. Genome Res 12:436–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61–80

    Article  CAS  PubMed  Google Scholar 

  22. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  CAS  PubMed  Google Scholar 

  23. Mathe E, Olivier M, Kato S et al (2006) Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317–1325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    Article  CAS  PubMed  Google Scholar 

  25. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  26. De Baets G, Van Durme J, Reumers J et al (2012) SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res 40:D935–D939

    Article  PubMed Central  PubMed  Google Scholar 

  27. Li B, Krishnan VG, Mort ME, Xin F et al (2009) Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25:2744–2750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Calabrese R, Capriotti E, Fariselli P et al (2009) Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 30:1237–1244

    Article  CAS  PubMed  Google Scholar 

  30. Capriotti E, Altman RB (2011) Improving the prediction of disease-related variants using protein three-dimensional structure. BMC Bioinformatics 12(Suppl 4):S3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–2734

    Article  CAS  PubMed  Google Scholar 

  32. Kaminker JS, Zhang Y, Waugh A et al (2007) Distinguishing cancer-associated missense mutations from common polymorphisms. Cancer Res 67:465–473

    Article  CAS  PubMed  Google Scholar 

  33. Williams S (2012) Analysis of in silico tools for evaluating missense variants. http://www.ngrl.org.uk/Manchester/sites/default/files/publications/Add-To-Menu/Missense_Prediction_Tool_Report.pdf. Accessed 13 June 2013

  34. Thusberg J, Olatubosun A, Vihinen M (2011) Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 32:358–368

    Article  PubMed  Google Scholar 

  35. Kitts A, Sherry S (2002) The single nucleotide polymorphism database (dbSNP) of nucleotide sequence variation. In: The NCBI handbook [Internet]. http://www.ncbi.nlm.nih.gov/books/NBK21088/. Accessed 10 June 2013

  36. Leigh SE, Foster AH, Whittall RA et al (2008) Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Ann Hum Genet 72:485–498

    Article  CAS  PubMed  Google Scholar 

  37. Bell J, Bodmer D, Sistermans E et al (2007) Practice guidelines for the Interpretation and reporting of unclassified variants (UVs) in clinical molecular genetics. http://www.cmgs.org/BPGs/pdfs%20current%20bpgs/UV%20GUIDELINES%20ratified.pdf. Accessed 16 June 2013

  38. Richards CS, Bale S, Bellissimo DB et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10:294–300

    Article  CAS  PubMed  Google Scholar 

  39. Cassa CA, Tong MY, Jordan DM (2013) Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum Mutat 34:1216–1220

    Article  PubMed  Google Scholar 

  40. Spurdle AB, Healey S, Devereau A et al (2012) ENIGMA-evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat 33:2–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Plon SE, Eccles DM, Easton D et al (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29:1282–1291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Whatley SD, Mason NG, Woolf JR et al (2009) Diagnostic strategies for autosomal dominant acute porphyrias: retrospective analysis of 467 unrelated patients referred for mutational analysis of the HMBS, CPOX, or PPOX gene. Clin Chem 55:1406–1414

    Article  CAS  PubMed  Google Scholar 

  43. Hobbs HH, Brown MS, Goldstein JL (1992) Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1:445–466

    Article  CAS  PubMed  Google Scholar 

  44. Bhatti P, Struewing JP, Alexander BH et al (2008) Polymorphisms in DNA repair genes, ionizing radiation exposure and risk of breast cancer in U.S. radiologic technologists. Int J Cancer 122:177–182

    Article  CAS  PubMed  Google Scholar 

  45. Richards CS, Bale S, Bellissimo DB et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations. Genet Med 10:294–300

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody Caramins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cheong, P.L., Caramins, M. (2014). Approaches for Classifying DNA Variants Found by Sanger Sequencing in a Medical Genetics Laboratory. In: Trent, R. (eds) Clinical Bioinformatics. Methods in Molecular Biology, vol 1168. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0847-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0847-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0846-2

  • Online ISBN: 978-1-4939-0847-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics