Pseudogenes pp 63-73 | Cite as

Methods of Identification of Pseudogenes Based on Functionality: Hybridization of 18S rRNA and mRNA During Translation

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1167)

Abstract

Protein-coding sequences are characterized by a period-3 free energy signal that arises from the interaction between the 3′-terminal nucleotides of the 18S rRNA and the mRNA. Such a signal is not present in noncoding sequences such as introns and intergenic regions and can be used for pseudogene identification.

Key words

Hybridization of 18S rRNA and mRNA Secondary structure Free energy Cumulative sinusoidal wave Period-3 signal Amplitude Phase Pseudogene prediction 

References

  1. 1.
    Xing C, Bitzer D, Alexander W, Stomp A-M, Vouk M (2006) Free energy analysis on the coding region of the individual gene of Saccharomyces cerevisiae. In: 28th annual international conference of the IEEE engineering in medicine and biology society, New York, NY, U S A, 30 Aug–3 Sept 2006, p –4228Google Scholar
  2. 2.
    Xing C, Mishra M, Vu SK, Alexander W, Bitzer D, Vouk M (2004) Free energy based analysis of the coding region of Saccharomyces cerevisiae. NC symposium on biotechnology & bioinformatics, Research Triangle Park, NC, U S A, 12–15 Oct 2004, p –27Google Scholar
  3. 3.
    Xing C, Bitzer DL, Alexander WE, Vouk MA, Stomp A-M (2009) Identification of protein-coding sequences using the hybridization of 18S rRNA and mRNA during translation. Nucleic Acids Res 37(2):591–601. doi: 10.1093/nar/gkn917 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Xing C (2007) Analysis and identification of protein-coding sequences for yeast using signal processing approaches. North Carolina State University, Raleigh, NCGoogle Scholar
  5. 5.
    Freier S, Kierzek R, Jaeger J, Sugimoto N, Caruthers M et al (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A 83:9373–9377PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Bommarito S, Peyret N, SantaLucia J Jr (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res 28(9):1929–1934PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Xia T, SantaLucia J Jr, Burkard M, Kierzek R, Schroeder S et al (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with watson-crick base pairs. Biochemistry 37:14719–14735PubMedCrossRefGoogle Scholar
  9. 9.
    Mathews D, Sabina J, Zuker M, Turner D (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940PubMedCrossRefGoogle Scholar
  10. 10.
    Jaeger J, Turner JD, Zuker M (1986) Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A 37:7706–7710Google Scholar
  11. 11.
    Dash D, Gopalakrishnan V (2001) Modeling DNA splice regions by learning bayesian networks. Technical report, Center for Biomedical Informatics, University of PittsburghGoogle Scholar
  12. 12.
    Degroeve S, Baets BD, de Peer YV, Rouze P (2002) Feature subset selection for splice site prediction. Bioinformatics 18:75–82CrossRefGoogle Scholar
  13. 13.
    Delcher A et al (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of BiostatisticsBoston University, School of Public HealthBostonUSA

Personalised recommendations