Axon Regeneration: What Needs to Be Overcome?

Part of the Methods in Molecular Biology book series (MIMB, volume 1162)


Axon regeneration is crucial for recovery of function after nervous system injury. Over many years, research has uncovered numerous factors which prevent damaged axons from regrowing and reforming functional connections after damage. These factors are both extrinsic, relating to the central nervous system environment, and intrinsic, relating to the growth capacity of the neurons themselves. In this short review, I summarize these elements with a view to illustrating how they may be overcome to promote nervous system repair.

Key words

Axon regeneration Axon growth Growth cone Spinal cord injury 


  1. 1.
    Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system. Oxford University Press, LondonGoogle Scholar
  2. 2.
    Aguayo AJ, David S, Bray GM (1981) Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J Exp Biol 95: 231–240PubMedGoogle Scholar
  3. 3.
    David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214(4523):931–933PubMedCrossRefGoogle Scholar
  4. 4.
    Wictorin K, Bjorklund A (1992) Axon outgrowth from grafts of human embryonic spinal cord in the lesioned adult rat spinal cord. Neuroreport 3(12):1045–1048PubMedCrossRefGoogle Scholar
  5. 5.
    Wictorin K, Brundin P, Gustavii B, Lindvall O, Bjorklund A (1990) Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347(6293):556–558. doi: 10.1038/347556a0 PubMedCrossRefGoogle Scholar
  6. 6.
    Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330(6005):779–782. doi: 10.1126/science.1190927 PubMedCrossRefGoogle Scholar
  7. 7.
    Schwab ME, Thoenen H (1985) Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J Neurosci 5(9):2415–2423PubMedGoogle Scholar
  8. 8.
    Caroni P, Schwab ME (1988) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1(1): 85–96PubMedCrossRefGoogle Scholar
  9. 9.
    Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343(6255):269–272. doi: 10.1038/343269a0 PubMedCrossRefGoogle Scholar
  10. 10.
    Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403(6768):434–439. doi: 10.1038/35000219 PubMedCrossRefGoogle Scholar
  11. 11.
    GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403(6768):439–444. doi: 10.1038/35000226 PubMedCrossRefGoogle Scholar
  12. 12.
    Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS (2000) Inhibitor of neurite outgrowth in humans. Nature 403(6768):383–384. doi: 10.1038/35000287 PubMedCrossRefGoogle Scholar
  13. 13.
    Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4(9):703–713. doi: 10.1038/nrn1195 PubMedCrossRefGoogle Scholar
  14. 14.
    Kim JE, Li S, GrandPre T, Qiu D, Strittmatter SM (2003) Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 38(2):187–199PubMedCrossRefGoogle Scholar
  15. 15.
    Simonen M, Pedersen V, Weinmann O, Schnell L, Buss A, Ledermann B, Christ F, Sansig G, van der Putten H, Schwab ME (2003) Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38(2):201–211PubMedCrossRefGoogle Scholar
  16. 16.
    Woolf CJ (2003) No Nogo: now where to go? Neuron 38(2):153–156PubMedCrossRefGoogle Scholar
  17. 17.
    Zheng B, Ho C, Li S, Keirstead H, Steward O, Tessier-Lavigne M (2003) Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38(2):213–224PubMedCrossRefGoogle Scholar
  18. 18.
    Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409(6818):341–346. doi: 10.1038/35053072 PubMedCrossRefGoogle Scholar
  19. 19.
    Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420(6911):74–78. doi: 10.1038/nature01176 PubMedCrossRefGoogle Scholar
  20. 20.
    Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157(4):565–570. doi: 10.1083/jcb.200202010 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7(3):221–228. doi: 10.1038/nn1188 PubMedCrossRefGoogle Scholar
  22. 22.
    Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7(3):221–228. doi: 10.1038/nn1188 PubMedCrossRefGoogle Scholar
  23. 23.
    Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N, Thill G, Levesque M, Sah D, McCoy JM, Murray B, Jung V, Pepinsky RB, Mi S (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45(3):353–359. doi: 10.1016/j.neuron.2004.12.050 PubMedCrossRefGoogle Scholar
  24. 24.
    Park JB, Yiu G, Kaneko S, Wang J, Chang J, He XL, Garcia KC, He Z (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45(3):345–351. doi: 10.1016/j.neuron.2004.12.040 PubMedCrossRefGoogle Scholar
  25. 25.
    GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417(6888):547–551. doi: 10.1038/417547a PubMedCrossRefGoogle Scholar
  26. 26.
    Steward O, Sharp K, Yee KM, Hofstadter M (2008) A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Exp Neurol 209(2):446–468. doi: 10.1016/j.expneurol.2007.12.010 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322(5903):967–970. doi: 10.1126/science.1161151 PubMedCrossRefGoogle Scholar
  28. 28.
    Filbin MT (2008) PirB, a second receptor for the myelin inhibitors of axonal regeneration Nogo66, MAG, and OMgp: implications for regeneration in vivo. Neuron 60(5):740–742. doi: 10.1016/j.neuron.2008.12.001 PubMedCrossRefGoogle Scholar
  29. 29.
    Quarles RH, Sakuragawa N, Everly JL, Pasnak CF, Webster HD, Trapp BD (1978) A biochemical comparison of Xenopus laevis and mammalian myelin from the central and peripheral nervous systems. J Neurobiol 9(3):217–228. doi: 10.1002/neu.480090304 PubMedCrossRefGoogle Scholar
  30. 30.
    Trapp BD (1990) Myelin-associated glycoprotein. Location and potential functions. Ann N Y Acad Sci 605:29–43PubMedCrossRefGoogle Scholar
  31. 31.
    Quarles RH (2007) Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem 100(6):1431–1448. doi: 10.1111/j.1471-4159.2006.04319.x PubMedGoogle Scholar
  32. 32.
    McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13(4):805–811PubMedCrossRefGoogle Scholar
  33. 33.
    Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13(3):757–767PubMedCrossRefGoogle Scholar
  34. 34.
    Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179. doi: 10.1146/annurev.neuro.30.051606.094354 PubMedCrossRefGoogle Scholar
  35. 35.
    Bartsch U, Bandtlow CE, Schnell L, Bartsch S, Spillmann AA, Rubin BP, Hillenbrand R, Montag D, Schwab ME, Schachner M (1995) Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 15(6):1375–1381PubMedCrossRefGoogle Scholar
  36. 36.
    Cafferty WB, Duffy P, Huebner E, Strittmatter SM (2010) MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci 30(20):6825–6837. doi: 10.1523/JNEUROSCI.6239-09.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin M (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35(2):283–290PubMedCrossRefGoogle Scholar
  38. 38.
    Liu BP, Fournier A, GrandPre T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297(5584):1190–1193. doi: 10.1126/science.1073031 PubMedCrossRefGoogle Scholar
  39. 39.
    Schnaar RL, Lopez PH (2009) Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 87(15):3267–3276. doi: 10.1002/jnr.21992 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417(6892):941–944. doi: 10.1038/nature00867 PubMedCrossRefGoogle Scholar
  41. 41.
    Mikol DD, Stefansson K (1988) A phosphatidylinositol-linked peanut agglutinin-binding glycoprotein in central nervous system myelin and on oligodendrocytes. J Cell Biol 106(4):1273–1279PubMedCrossRefGoogle Scholar
  42. 42.
    Kottis V, Thibault P, Mikol D, Xiao ZC, Zhang R, Dergham P, Braun PE (2002) Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem 82(6): 1566–1569PubMedCrossRefGoogle Scholar
  43. 43.
    Goldshmit Y, McLenachan S, Turnley A (2006) Roles of Eph receptors and ephrins in the normal and damaged adult CNS. Brain Res Rev 52(2):327–345. doi: 10.1016/j.brainresrev.2006.04.006 PubMedCrossRefGoogle Scholar
  44. 44.
    Cenci MA, Campbell K, Wictorin K, Bjorklund A (1992) Striatal c-fos induction by cocaine or apomorphine occurs preferentially in output neurons projecting to the substantia nigra in the rat. Eur J Neurosci 4(4):376–380PubMedCrossRefGoogle Scholar
  45. 45.
    Colamarino SA, Tessier-Lavigne M (1995) The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81(4):621–629PubMedCrossRefGoogle Scholar
  46. 46.
    Low K, Culbertson M, Bradke F, Tessier-Lavigne M, Tuszynski MH (2008) Netrin-1 is a novel myelin-associated inhibitor to axon growth. J Neurosci 28(5):1099–1108. doi: 10.1523/JNEUROSCI.4906-07.2008 PubMedCrossRefGoogle Scholar
  47. 47.
    Castellani V, Rougon G (2002) Control of semaphorin signaling. Curr Opin Neurobiol 12(5):532–541PubMedCrossRefGoogle Scholar
  48. 48.
    Moreau-Fauvarque C, Kumanogoh A, Camand E, Jaillard C, Barbin G, Boquet I, Love C, Jones EY, Kikutani H, Lubetzki C, Dusart I, Chedotal A (2003) The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci 23(27):9229–9239PubMedGoogle Scholar
  49. 49.
    Goldberg JL, Vargas ME, Wang JT, Mandemakers W, Oster SF, Sretavan DW, Barres BA (2004) An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J Neurosci 24(21):4989–4999. doi: 10.1523/JNEUROSCI.4390-03.2004 PubMedCrossRefGoogle Scholar
  50. 50.
    Chen ZJ, Negra M, Levine A, Ughrin Y, Levine JM (2002) Oligodendrocyte precursor cells: reactive cells that inhibit axon growth and regeneration. J Neurocytol 31(6–7): 481–495PubMedCrossRefGoogle Scholar
  51. 51.
    Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391PubMedCrossRefGoogle Scholar
  52. 52.
    Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155. doi: 10.1523/JNEUROSCI.3547-03.2004 PubMedCrossRefGoogle Scholar
  53. 53.
    Sharma K, Selzer ME, Li S (2012) Scar-mediated inhibition and CSPG receptors in the CNS. Exp Neurol 237(2):370–378. doi: 10.1016/j.expneurol.2012.07.009 PubMedCrossRefGoogle Scholar
  54. 54.
    Properzi F, Asher RA, Fawcett JW (2003) Chondroitin sulphate proteoglycans in the central nervous system: changes and synthesis after injury. Biochem Soc Trans 31(2):335–336, doi:  10.1042/BST0310335 PubMedCrossRefGoogle Scholar
  55. 55.
    Kwok JC, Warren P, Fawcett JW (2012) Chondroitin sulfate: a key molecule in the brain matrix. Int J Biochem Cell Biol 44(4):582–586. doi: 10.1016/j.biocel.2012.01.004 PubMedCrossRefGoogle Scholar
  56. 56.
    Nakamae T, Tanaka N, Nakanishi K, Kamei N, Sasaki H, Hamasaki T, Yamada K, Yamamoto R, Mochizuki Y, Ochi M (2009) Chondroitinase ABC promotes corticospinal axon growth in organotypic cocultures. Spinal Cord 47(2):161–165. doi: 10.1038/sc.2008.74 PubMedCrossRefGoogle Scholar
  57. 57.
    Busch SA, Horn KP, Silver DJ, Silver J (2009) Overcoming macrophage-mediated axonal dieback following CNS injury. J Neurosci 29(32):9967–9976. doi: 10.1523/JNEUROSCI.1151-09.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640. doi: 10.1038/416636a PubMedCrossRefGoogle Scholar
  59. 59.
    Crespo D, Asher RA, Lin R, Rhodes KE, Fawcett JW (2007) How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol 206(2):159–171. doi: 10.1016/j.expneurol.2007.05.001 PubMedCrossRefGoogle Scholar
  60. 60.
    Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG, Zheng B, Liepmann CD, Katagiri Y, Benowitz LI, Geller HM, Giger RJ (2012) NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15(5):703–712. doi: 10.1038/nn.3070 PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R, Cannon S, Longo FM, Sheng M, Silver J, Li S (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31(40):14051–14066. doi: 10.1523/JNEUROSCI.1737-11.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, He Z, Silver J, Flanagan JG (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326(5952):592–596. doi: 10.1126/science.1178310 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Dill J, Wang H, Zhou F, Li S (2008) Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci 28(36):8914–8928. doi: 10.1523/JNEUROSCI.1178-08.2008 PubMedCrossRefGoogle Scholar
  64. 64.
    Powell EM, Mercado ML, Calle-Patino Y, Geller HM (2001) Protein kinase C mediates neurite guidance at an astrocyte boundary. Glia 33(4):288–297PubMedCrossRefGoogle Scholar
  65. 65.
    Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 22(3):319–330PubMedCrossRefGoogle Scholar
  66. 66.
    Shewan D, Berry M, Cohen J (1995) Extensive regeneration in vitro by early embryonic neurons on immature and adult CNS tissue. J Neurosci 15(3 Pt 1):2057–2062PubMedGoogle Scholar
  67. 67.
    Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C (2013) Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 340(6130):372–376. doi: 10.1126/science.1231321 PubMedCrossRefGoogle Scholar
  68. 68.
    Chen DF, Schneider GE, Martinou JC, Tonegawa S (1997) Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 385(6615):434–439. doi: 10.1038/385434a0 PubMedCrossRefGoogle Scholar
  69. 69.
    Cho KS, Yang L, Lu B, Feng Ma H, Huang X, Pekny M, Chen DF (2005) Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 118(Pt 5):863–872. doi: 10.1242/jcs.01658 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Jiao J, Huang X, Feit-Leithman RA, Neve RL, Snider W, Dartt DA, Chen DF (2005) Bcl-2 enhances Ca(2+) signaling to support the intrinsic regenerative capacity of CNS axons. EMBO J 24(5):1068–1078. doi: 10.1038/sj.emboj.7600589 PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Inoue T, Hosokawa M, Morigiwa K, Ohashi Y, Fukuda Y (2002) Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. J Neurosci 22(11):4468–4477PubMedGoogle Scholar
  72. 72.
    Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188(2):143–160. doi: 10.1002/jcp.1111 PubMedCrossRefGoogle Scholar
  73. 73.
    Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326(5950):298–301. doi: 10.1126/science.1175737 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Laub F, Dragomir C, Ramirez F (2006) Mice without transcription factor KLF7 provide new insight into olfactory bulb development. Brain Res 1103(1):108–113. doi: 10.1016/j.brainres.2006.05.065 PubMedCrossRefGoogle Scholar
  75. 75.
    Moore DL, Apara A, Goldberg JL (2011) Kruppel-like transcription factors in the nervous system: novel players in neurite outgrowth and axon regeneration. Mol Cell Neurosci 47(4):233–243. doi: 10.1016/j.mcn.2011.05.005 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT (2001) Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci 21(13):4731–4739PubMedGoogle Scholar
  77. 77.
    Shewan D, Dwivedy A, Anderson R, Holt CE (2002) Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Nat Neurosci 5(10):955–962. doi: 10.1038/nn919 PubMedCrossRefGoogle Scholar
  78. 78.
    Richardson PM, Issa VM (1984) Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309(5971):791–793PubMedCrossRefGoogle Scholar
  79. 79.
    Neumann S, Woolf CJ (1999) Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23(1):83–91PubMedCrossRefGoogle Scholar
  80. 80.
    Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34(6):895–903PubMedCrossRefGoogle Scholar
  81. 81.
    Qiu J, Cai D, Filbin MT (2002) A role for cAMP in regeneration during development and after injury. Prog Brain Res 137:381–387PubMedCrossRefGoogle Scholar
  82. 82.
    Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34(6):885–893PubMedCrossRefGoogle Scholar
  83. 83.
    Murray AJ, Shewan DA (2008) Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol Cell Neurosci 38(4):578–588. doi: 10.1016/j.mcn.2008.05.006 PubMedCrossRefGoogle Scholar
  84. 84.
    Murray AJ, Tucker SJ, Shewan DA (2009) cAMP-dependent axon guidance is distinctly regulated by Epac and protein kinase A. J Neurosci 29(49):15434–15444. doi: 10.1523/JNEUROSCI.3071-09.2009 PubMedCrossRefGoogle Scholar
  85. 85.
    Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152. doi: 10.1146/annurev-neuro-061010-113723 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations