Skip to main content

Isolation of Swine Influenza Virus in Cell Cultures and Embryonated Chicken Eggs

  • Protocol
  • First Online:
Animal Influenza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1161))

Abstract

Influenza virus isolation is a procedure to obtain a live and infectious virus that can be used for antigenic characterization, pathogenesis investigation, and vaccine production. Embryonated chicken egg inoculation is traditionally considered the “gold standard” method for influenza virus isolation and propagation. However, many primary cells and continuous cell lines have also been examined or developed for influenza virus isolation and replication. Specifically, swine influenza virus (SIV) isolation and propagation have been attempted and compared in embryonated chicken eggs, some primary porcine cells, and a number of continuous cell lines. Currently Madin–Darby canine kidney (MDCK) cells remain the most commonly used cell line for isolation, propagation, and titration of SIV. Virus isolation in embryonated chicken eggs or in different cell lines offers alternative approaches when SIV isolation in MDCK cells is unsuccessful. Nasal swabs, lung tissues, and oral fluids are three major specimen types for SIV isolation. In this chapter, we describe the procedures of sample processing, SIV isolation in MDCK cells and in embryonated chicken eggs, as well as methods used for confirming the virus isolation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeolekar LR, Dhere RM (2012) Development and validation of an egg-based potency assay for a trivalent live attenuated influenza vaccine. Biologicals 40:146–150

    Article  CAS  PubMed  Google Scholar 

  2. Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y (1997) Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227:493–499

    Article  CAS  PubMed  Google Scholar 

  3. Katz JM, Naeve CW, Webster RG (1987) Host cell-mediated variation in H3N2 influenza viruses. Virology 156:386–395

    Article  CAS  PubMed  Google Scholar 

  4. Robertson JS, Naeve CW, Webster RG, Bootman JS, Newman R, Schild GC (1985) Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology 143:166–174

    Article  CAS  PubMed  Google Scholar 

  5. Schild GC, Oxford JS, de Jong JC, Webster RG (1983) Evidence for host-cell selection of influenza virus antigenic variants. Nature 303:706–709

    Article  CAS  PubMed  Google Scholar 

  6. Stevens J, Chen LM, Carney PJ, Garten R, Foust A, Le J, Pokorny BA, Manojkumar R, Silverman J, Devis R, Rhea K, Xu X, Bucher DJ, Paulson JC, Cox NJ, Klimov A, Donis RO (2010) Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs. J Virol 84: 8287–8299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Katz JM, Wang M, Webster RG (1990) Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol 64:1808–1811

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Robertson JS, Bootman JS, Nicolson C, Major D, Robertson EW, Wood JM (1990) The hemagglutinin of influenza B virus present in clinical material is a single species identical to that of mammalian cell-grown virus. Virology 179:35–40

    Article  CAS  PubMed  Google Scholar 

  9. Frank AL, Couch RB, Griffis CA, Baxter BD (1979) Comparison of different tissue cultures for isolation and quantitation of influenza and parainfluenza viruses. J Clin Microbiol 10: 32–36

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Meguro H, Bryant JD, Torrence AE, Wright PF (1979) Canine kidney cell line for isolation of respiratory viruses. J Clin Microbiol 9: 175–179

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Tobita K (1975) Permanent canine kidney (MDCK) cells for isolation and plaque assay of influenza B viruses. Med Microbiol Immunol 162:23–27

    Article  CAS  PubMed  Google Scholar 

  12. Tobita K, Sugiura A, Enomote C, Furuyama M (1975) Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med Microbiol Immunol 162:9–14

    Article  CAS  PubMed  Google Scholar 

  13. Govorkova EA, Kaverin NV, Gubareva LV, Meignier B, Webster RG (1995) Replication of influenza A viruses in a green monkey kidney continuous cell line (Vero). J Infect Dis 172:250–253

    Article  CAS  PubMed  Google Scholar 

  14. Govorkova EA, Murti G, Meignier B, de Taisne C, Webster RG (1996) African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J Virol 70:5519–5524

    CAS  PubMed Central  PubMed  Google Scholar 

  15. de Ona M, Melon S, de la Iglesia P, Hidalgo F, Verdugo AF (1995) Isolation of influenza virus in human lung embryonated fibroblast cells (MRC-5) from clinical samples. J Clin Microbiol 33:1948–1949

    PubMed Central  PubMed  Google Scholar 

  16. Schultz-Cherry S, Dybdahl-Sissoko N, McGregor M, Hinshaw VS (1998) Mink lung epithelial cells: unique cell line that supports influenza A and B virus replication. J Clin Microbiol 36:3718–3720

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Huang YT, Turchek BM (2000) Mink lung cells and mixed mink lung and A549 cells for rapid detection of influenza virus and other respiratory viruses. J Clin Microbiol 38:422–423

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhirnov OP, Vorobjeva IV, Saphonova OA, Malyshev NA, Ovcharenko AV, Klenk HD (2007) Specific biochemical features of replication of clinical influenza viruses in human intestinal cell culture. Biochemistry (Mosc) 72:398–408

    Article  CAS  Google Scholar 

  19. Reina J, Fernandez-Baca V, Blanco I, Munar M (1997) Comparison of Madin-Darby canine kidney cells (MDCK) with a green monkey continuous cell line (Vero) and human lung embryonated cells (MRC-5) in the isolation of influenza A virus from nasopharyngeal aspirates by shell vial culture. J Clin Microbiol 35:1900–1901

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hamilton SB, Wyatt DE, Wahlgren BT, O’Dowd MK, Morrissey JM, Daniels DE, Lednicky JA (2011) Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells. Virol J 8:66

    Article  PubMed Central  PubMed  Google Scholar 

  21. Landolt GA, Karasin AI, Hofer C, Mahaney J, Svaren J, Olsen CW (2005) Use of real-time reverse transcriptase polymerase chain reaction assay and cell culture methods for detection of swine influenza A viruses. Am J Vet Res 66:119–124

    Article  CAS  PubMed  Google Scholar 

  22. Li IW, Chan KH, To KW, Wong SS, Ho PL, Lau SK, Woo PC, Tsoi HW, Chan JF, Cheng VC, Zheng BJ, Chen H, Yuen KY (2009) Differential susceptibility of different cell lines to swine-origin influenza A H1N1, seasonal human influenza A H1N1, and avian influenza A H5N1 viruses. J Clin Virol 46:325–330

    Article  PubMed  Google Scholar 

  23. Moresco KA, Stallknecht DE, Swayne DE (2012) Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction-positive wild bird surveillance samples. J Vet Diagn Invest 24:563–567

    Article  PubMed  Google Scholar 

  24. Zeng H, Goldsmith CS, Maines TR, Belser JA, Gustin KM, Pekosz A, Zaki SR, Katz JM, Tumpey TM (2013) Tropism and infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal differentiated primary epithelial cell cultures. J Virol 87:2597–2607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Swenson SL, Vincent LL, Lute BM, Janke BH, Lechtenberg KE, Landgraf JG, Schmitt BJ, Kinker DR, McMillen JK (2001) A comparison of diagnostic assays for the detection of type A swine influenza virus from nasal swabs and lungs. J Vet Diagn Invest 13:36–42

    Article  CAS  PubMed  Google Scholar 

  26. Lombardo T, Dotti S, Renzi S, Ferrari M (2012) Susceptibility of different cell lines to avian and swine influenza viruses. J Virol Methods 185:82–88

    Article  CAS  PubMed  Google Scholar 

  27. Clavijo A, Tresnan DB, Jolie R, Zhou EM (2002) Comparison of embryonated chicken eggs with MDCK cell culture for the isolation of swine influenza virus. Can J Vet Res 66:117–121

    PubMed Central  PubMed  Google Scholar 

  28. Chiapponi C, Zanni I, Garbarino C, Barigazzi G, Foni E (2010) Comparison of the usefulness of the CACO-2 cell line with standard substrates for isolation of swine influenza A viruses. J Virol Methods 163:162–165

    Article  CAS  PubMed  Google Scholar 

  29. Bowman AS, Nelson SW, Edwards JL, Hofer CC, Nolting JM, Davis IC, Slemons RD (2013) Comparative effectiveness of isolation techniques for contemporary influenza A virus strains circulating in exhibition swine. J Vet Diagn Invest 25:82–90

    Article  PubMed  Google Scholar 

  30. Ferrari M, Scalvini A, Losio MN, Corradi A, Soncini M, Bignotti E, Milanesi E, Ajmone-Marsan P, Barlati S, Bellotti D, Tonelli M (2003) Establishment and characterization of two new pig cell lines for use in virological diagnostic laboratories. J Virol Methods 107:205–212

    Article  CAS  PubMed  Google Scholar 

  31. Sun Z, Huber VC, McCormick K, Kaushik RS, Boon AC, Zhu L, Hause B, Webby RJ, Fang Y (2012) Characterization of a porcine intestinal epithelial cell line for influenza virus production. J Gen Virol 93:2008–2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Punyadarsaniya D, Liang CH, Winter C, Petersen H, Rautenschlein S, Hennig-Pauka I, Schwegmann-Wessels C, Wu CY, Wong CH, Herrler G (2011) Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses. PLoS One 6:e28429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Bateman AC, Karasin AI, Olsen CW (2013) Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication. Influenza Other Respi Viruses 7:139–150

    Article  PubMed Central  Google Scholar 

  34. Khatri M, Saif YM (2011) Epithelial cells derived from swine bone marrow express stem cell markers and support influenza virus replication in vitro. PLoS One 6:e29567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. OIE (2013) Chapter 2.8.8 swine influenza, OIE manual of diagnostic tests and vaccines for terrestrial animals 2013

    Google Scholar 

  36. Detmer S, Gramer M, Goyal S, Torremorell M, Torrison J (2013) Diagnostics and surveillance for swine influenza. Curr Top Microbiol Immunol 370:85–112

    PubMed  Google Scholar 

  37. Romagosa A, Gramer M, Joo HS, Torremorell M (2012) Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and non-vaccinated pigs. Influenza Other Respi Viruses 6:110–118

    Article  CAS  PubMed Central  Google Scholar 

  38. Detmer SE, Patnayak DP, Jiang Y, Gramer MR, Goyal SM (2011) Detection of influenza A virus in porcine oral fluid samples. J Vet Diagn Invest 23:241–247

    Article  PubMed  Google Scholar 

  39. Ramirez A, Wang C, Prickett JR, Pogranichniy R, Yoon KJ, Main R, Johnson JK, Rademacher C, Hoogland M, Hoffmann P, Kurtz A, Kurtz E, Zimmerman J (2012) Efficient surveillance of pig populations using oral fluids. Prev Vet Med 104:292–300

    Article  PubMed  Google Scholar 

  40. Goodell CK, Prickett J, Kittawornrat A, Zhou F, Rauh R, Nelson W, O’Connell C, Burrell A, Wang C, Yoon KJ, Zimmerman JJ (2013) Probability of detecting influenza A virus subtypes H1N1 and H3N2 in individual pig nasal swabs and pen-based oral fluid specimens over time. Vet Microbiol 166:450–460

    Article  PubMed  Google Scholar 

  41. Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68: 440–454

    Article  CAS  PubMed  Google Scholar 

  42. Zhirnov O, Klenk HD (2003) Human influenza A viruses are proteolytically activated and do not induce apoptosis in CACO-2 cells. Virology 313:198–212

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, J., Gauger, P.C. (2014). Isolation of Swine Influenza Virus in Cell Cultures and Embryonated Chicken Eggs. In: Spackman, E. (eds) Animal Influenza Virus. Methods in Molecular Biology, vol 1161. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0758-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0758-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0757-1

  • Online ISBN: 978-1-4939-0758-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics