Abstract
Influenza virus isolation is a procedure to obtain a live and infectious virus that can be used for antigenic characterization, pathogenesis investigation, and vaccine production. Embryonated chicken egg inoculation is traditionally considered the “gold standard” method for influenza virus isolation and propagation. However, many primary cells and continuous cell lines have also been examined or developed for influenza virus isolation and replication. Specifically, swine influenza virus (SIV) isolation and propagation have been attempted and compared in embryonated chicken eggs, some primary porcine cells, and a number of continuous cell lines. Currently Madin–Darby canine kidney (MDCK) cells remain the most commonly used cell line for isolation, propagation, and titration of SIV. Virus isolation in embryonated chicken eggs or in different cell lines offers alternative approaches when SIV isolation in MDCK cells is unsuccessful. Nasal swabs, lung tissues, and oral fluids are three major specimen types for SIV isolation. In this chapter, we describe the procedures of sample processing, SIV isolation in MDCK cells and in embryonated chicken eggs, as well as methods used for confirming the virus isolation results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yeolekar LR, Dhere RM (2012) Development and validation of an egg-based potency assay for a trivalent live attenuated influenza vaccine. Biologicals 40:146–150
Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y (1997) Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227:493–499
Katz JM, Naeve CW, Webster RG (1987) Host cell-mediated variation in H3N2 influenza viruses. Virology 156:386–395
Robertson JS, Naeve CW, Webster RG, Bootman JS, Newman R, Schild GC (1985) Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology 143:166–174
Schild GC, Oxford JS, de Jong JC, Webster RG (1983) Evidence for host-cell selection of influenza virus antigenic variants. Nature 303:706–709
Stevens J, Chen LM, Carney PJ, Garten R, Foust A, Le J, Pokorny BA, Manojkumar R, Silverman J, Devis R, Rhea K, Xu X, Bucher DJ, Paulson JC, Cox NJ, Klimov A, Donis RO (2010) Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs. J Virol 84: 8287–8299
Katz JM, Wang M, Webster RG (1990) Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol 64:1808–1811
Robertson JS, Bootman JS, Nicolson C, Major D, Robertson EW, Wood JM (1990) The hemagglutinin of influenza B virus present in clinical material is a single species identical to that of mammalian cell-grown virus. Virology 179:35–40
Frank AL, Couch RB, Griffis CA, Baxter BD (1979) Comparison of different tissue cultures for isolation and quantitation of influenza and parainfluenza viruses. J Clin Microbiol 10: 32–36
Meguro H, Bryant JD, Torrence AE, Wright PF (1979) Canine kidney cell line for isolation of respiratory viruses. J Clin Microbiol 9: 175–179
Tobita K (1975) Permanent canine kidney (MDCK) cells for isolation and plaque assay of influenza B viruses. Med Microbiol Immunol 162:23–27
Tobita K, Sugiura A, Enomote C, Furuyama M (1975) Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med Microbiol Immunol 162:9–14
Govorkova EA, Kaverin NV, Gubareva LV, Meignier B, Webster RG (1995) Replication of influenza A viruses in a green monkey kidney continuous cell line (Vero). J Infect Dis 172:250–253
Govorkova EA, Murti G, Meignier B, de Taisne C, Webster RG (1996) African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J Virol 70:5519–5524
de Ona M, Melon S, de la Iglesia P, Hidalgo F, Verdugo AF (1995) Isolation of influenza virus in human lung embryonated fibroblast cells (MRC-5) from clinical samples. J Clin Microbiol 33:1948–1949
Schultz-Cherry S, Dybdahl-Sissoko N, McGregor M, Hinshaw VS (1998) Mink lung epithelial cells: unique cell line that supports influenza A and B virus replication. J Clin Microbiol 36:3718–3720
Huang YT, Turchek BM (2000) Mink lung cells and mixed mink lung and A549 cells for rapid detection of influenza virus and other respiratory viruses. J Clin Microbiol 38:422–423
Zhirnov OP, Vorobjeva IV, Saphonova OA, Malyshev NA, Ovcharenko AV, Klenk HD (2007) Specific biochemical features of replication of clinical influenza viruses in human intestinal cell culture. Biochemistry (Mosc) 72:398–408
Reina J, Fernandez-Baca V, Blanco I, Munar M (1997) Comparison of Madin-Darby canine kidney cells (MDCK) with a green monkey continuous cell line (Vero) and human lung embryonated cells (MRC-5) in the isolation of influenza A virus from nasopharyngeal aspirates by shell vial culture. J Clin Microbiol 35:1900–1901
Hamilton SB, Wyatt DE, Wahlgren BT, O’Dowd MK, Morrissey JM, Daniels DE, Lednicky JA (2011) Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells. Virol J 8:66
Landolt GA, Karasin AI, Hofer C, Mahaney J, Svaren J, Olsen CW (2005) Use of real-time reverse transcriptase polymerase chain reaction assay and cell culture methods for detection of swine influenza A viruses. Am J Vet Res 66:119–124
Li IW, Chan KH, To KW, Wong SS, Ho PL, Lau SK, Woo PC, Tsoi HW, Chan JF, Cheng VC, Zheng BJ, Chen H, Yuen KY (2009) Differential susceptibility of different cell lines to swine-origin influenza A H1N1, seasonal human influenza A H1N1, and avian influenza A H5N1 viruses. J Clin Virol 46:325–330
Moresco KA, Stallknecht DE, Swayne DE (2012) Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction-positive wild bird surveillance samples. J Vet Diagn Invest 24:563–567
Zeng H, Goldsmith CS, Maines TR, Belser JA, Gustin KM, Pekosz A, Zaki SR, Katz JM, Tumpey TM (2013) Tropism and infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal differentiated primary epithelial cell cultures. J Virol 87:2597–2607
Swenson SL, Vincent LL, Lute BM, Janke BH, Lechtenberg KE, Landgraf JG, Schmitt BJ, Kinker DR, McMillen JK (2001) A comparison of diagnostic assays for the detection of type A swine influenza virus from nasal swabs and lungs. J Vet Diagn Invest 13:36–42
Lombardo T, Dotti S, Renzi S, Ferrari M (2012) Susceptibility of different cell lines to avian and swine influenza viruses. J Virol Methods 185:82–88
Clavijo A, Tresnan DB, Jolie R, Zhou EM (2002) Comparison of embryonated chicken eggs with MDCK cell culture for the isolation of swine influenza virus. Can J Vet Res 66:117–121
Chiapponi C, Zanni I, Garbarino C, Barigazzi G, Foni E (2010) Comparison of the usefulness of the CACO-2 cell line with standard substrates for isolation of swine influenza A viruses. J Virol Methods 163:162–165
Bowman AS, Nelson SW, Edwards JL, Hofer CC, Nolting JM, Davis IC, Slemons RD (2013) Comparative effectiveness of isolation techniques for contemporary influenza A virus strains circulating in exhibition swine. J Vet Diagn Invest 25:82–90
Ferrari M, Scalvini A, Losio MN, Corradi A, Soncini M, Bignotti E, Milanesi E, Ajmone-Marsan P, Barlati S, Bellotti D, Tonelli M (2003) Establishment and characterization of two new pig cell lines for use in virological diagnostic laboratories. J Virol Methods 107:205–212
Sun Z, Huber VC, McCormick K, Kaushik RS, Boon AC, Zhu L, Hause B, Webby RJ, Fang Y (2012) Characterization of a porcine intestinal epithelial cell line for influenza virus production. J Gen Virol 93:2008–2016
Punyadarsaniya D, Liang CH, Winter C, Petersen H, Rautenschlein S, Hennig-Pauka I, Schwegmann-Wessels C, Wu CY, Wong CH, Herrler G (2011) Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses. PLoS One 6:e28429
Bateman AC, Karasin AI, Olsen CW (2013) Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication. Influenza Other Respi Viruses 7:139–150
Khatri M, Saif YM (2011) Epithelial cells derived from swine bone marrow express stem cell markers and support influenza virus replication in vitro. PLoS One 6:e29567
OIE (2013) Chapter 2.8.8 swine influenza, OIE manual of diagnostic tests and vaccines for terrestrial animals 2013
Detmer S, Gramer M, Goyal S, Torremorell M, Torrison J (2013) Diagnostics and surveillance for swine influenza. Curr Top Microbiol Immunol 370:85–112
Romagosa A, Gramer M, Joo HS, Torremorell M (2012) Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and non-vaccinated pigs. Influenza Other Respi Viruses 6:110–118
Detmer SE, Patnayak DP, Jiang Y, Gramer MR, Goyal SM (2011) Detection of influenza A virus in porcine oral fluid samples. J Vet Diagn Invest 23:241–247
Ramirez A, Wang C, Prickett JR, Pogranichniy R, Yoon KJ, Main R, Johnson JK, Rademacher C, Hoogland M, Hoffmann P, Kurtz A, Kurtz E, Zimmerman J (2012) Efficient surveillance of pig populations using oral fluids. Prev Vet Med 104:292–300
Goodell CK, Prickett J, Kittawornrat A, Zhou F, Rauh R, Nelson W, O’Connell C, Burrell A, Wang C, Yoon KJ, Zimmerman JJ (2013) Probability of detecting influenza A virus subtypes H1N1 and H3N2 in individual pig nasal swabs and pen-based oral fluid specimens over time. Vet Microbiol 166:450–460
Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68: 440–454
Zhirnov O, Klenk HD (2003) Human influenza A viruses are proteolytically activated and do not induce apoptosis in CACO-2 cells. Virology 313:198–212
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this protocol
Cite this protocol
Zhang, J., Gauger, P.C. (2014). Isolation of Swine Influenza Virus in Cell Cultures and Embryonated Chicken Eggs. In: Spackman, E. (eds) Animal Influenza Virus. Methods in Molecular Biology, vol 1161. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0758-8_22
Download citation
DOI: https://doi.org/10.1007/978-1-4939-0758-8_22
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-0757-1
Online ISBN: 978-1-4939-0758-8
eBook Packages: Springer Protocols