Neurovascular Coupling in the Deep Brain Using Confocal Fiber-Optic Endomicroscopy

  • Samuel BélangerEmail author
  • Bruno Oliveira Ferreira de Souza
  • Philippe Pouliot
  • Christian Casanova
  • Frédéric Lesage
Part of the Neuromethods book series (NM, volume 88)


Developing fast functional imaging approaches of subcortical structures is essential to make progress in our understanding of brain function and diseases. Positron emission tomography and functional magnetic resonance imaging have been used to improve our understanding of brain function and integration of neuronal activity between deeper structures and the superficial cortex but limitations remain associated with signal interpretation. This work describes the design and utilization of confocal microendoscopy techniques to image brain structures involved in visual processing, either deep or on the surface of the cortex. Also, multiple examples using different experimental approaches are described.

Key words

Confocal microendoscopy Calcium imaging 


  1. 1.
    Olsen SR, Bortone DS, Adesnik H, Scanziani M (2012) Gain control by layer six in cortical circuits of vision. Nature 483(7387):47–52PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ghose GM, Ohzawa I, Freeman RD, DeAngelis GC (1999) Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J Neurosci 19(10):4046–4064PubMedGoogle Scholar
  3. 3.
    Nelson SB, Le Vay S (1985) Topographic organization of the optic radiation of the cat. J Comp Neurol 240(3):322–330PubMedCrossRefGoogle Scholar
  4. 4.
    Hirsch S, Reichold J, Schneider M, Székely G, Weber B (2012) Topology and hemodynamics of the cortical cerebrovascular system. J Cereb Blood Flow Metab 32(6):952–67. Accessed 1 Jun 2012
  5. 5.
    Sakadžić S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ, Arai K et al (2010) Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Methods 7(9):755–759PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Chen BR, Bouchard MB, McCaslin AFH, Burgess SA, Hillman EMC (2011) High-speed vascular dynamics of the hemodynamic response. Neuroimage 54(2):1021–1030PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Srinivasan VJ, Sakadzić S, Gorczynska I, Ruvinskaya S, Wu W, Fujimoto JG et al (2010) Quantitative cerebral blood flow with optical coherence tomography. Opt Express 18(3):2477–2494PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Devor A, Hillman EMC, Tian P, Waeber C, Teng IC, Ruvinskaya L et al (2008) Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J Neurosci 28(53):14347–14357PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32(3):160–169PubMedCrossRefGoogle Scholar
  10. 10.
    Cauli B, Hamel E (2010) Revisiting the role of neurons in neurovascular coupling. Front Neuroenergetics 2:9. Accessed 10 Sep 2012
  11. 11.
    Carmignoto G, Gómez-Gonzalo M (2010) The contribution of astrocyte signalling to neurovascular coupling. Brain Res Rev 63(1–2):138–148PubMedCrossRefGoogle Scholar
  12. 12.
    Devonshire IM, Papadakis NG, Port M, Berwick J, Kennerley AJ, Mayhew JEW et al (2012) Neurovascular coupling is brain region-dependent. Neuroimage 59(3):1997–2006PubMedCrossRefGoogle Scholar
  13. 13.
    Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71(5):782–797PubMedCrossRefGoogle Scholar
  14. 14.
    Blicher JU, Stagg CJ, O’Shea J, Østergaard L, MacIntosh BJ, Johansen-Berg H, et al (2012) Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI. J Cereb Blood Flow Metab 32(11):2044–54. Accessed 21 Sep 2012
  15. 15.
    Lin WH, Hao Q, Rosengarten B, Leung WH, Wong KS (2011) Impaired neurovascular coupling in ischaemic stroke patients with large or small vessel disease. Eur J Neurol 18(5):731–736PubMedCrossRefGoogle Scholar
  16. 16.
    Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100(1):328–335PubMedCrossRefGoogle Scholar
  17. 17.
    Lin AJ, Konecky SD, Rice TB, Green KN, Choi B, Durkin AJ, et al (2012) Towards spatial frequency domain optical imaging of neurovascular coupling in a mouse model of Alzheimer’s disease. Proc SPIE 8207:82074UGoogle Scholar
  18. 18.
    Da Silva N, Szobot CM, Anselmi CE, Jackowski AP, Chi SM, Hoexter MQ et al (2011) Attention deficit/hyperactivity disorder. Clin Nucl Med 36(8):656–660PubMedCrossRefGoogle Scholar
  19. 19.
    White BR, Bauer AQ, Snyder AZ, Schlaggar BL, Lee J-M, Culver JP (2011) Imaging of functional connectivity in the mouse brain. PLoS One 6(1):e16322PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ayling OGS, Harrison TC, Boyd JD, Goroshkov A, Murphy TH (2009) Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat Methods 6(3):219–224PubMedCrossRefGoogle Scholar
  21. 21.
    Vanni MP, Provost J, Casanova C, Lesage F (2010) Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity. Neuroimage 49(2):1416–1431PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Chemla S, Chavane F (2010) A biophysical cortical column model to study the multi-component origin of the VSDI signal. Neuroimage 53(2):420–438PubMedCrossRefGoogle Scholar
  23. 23.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031PubMedCrossRefGoogle Scholar
  25. 25.
    Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463(7278):232–236PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lee S, Yoon B-E, Berglund K, Oh S-J, Park H, Shin H-S et al (2010) Channel-mediated tonic GABA release from glia. Science 330(6005):790–796PubMedCrossRefGoogle Scholar
  27. 27.
    Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327(5970):1250–1254PubMedCrossRefGoogle Scholar
  28. 28.
    Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 28(26):6659–6663PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M (2012) A neural circuit for spatial summation in visual cortex. Nature 490(7419):226–231PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lee S-H, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, et al (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488(7411):379–83. Accessed 9 Aug 2012
  31. 31.
    Kätzel D, Zemelman BV, Buetfering C, Wölfel M, Miesenböck G (2010) The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat Neurosci 14(1):100–107PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Nauhaus I, Nielsen KJ, Disney AA, Callaway EM (2012) Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat Neurosci 15(12):1683–1690. Accessed 13 Nov 2012
  33. 33.
    Denk W, Delaney KR, Gelperin A, Kleinfeld D, Strowbridge BW, Tank DW et al (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods 54(2):151–162PubMedCrossRefGoogle Scholar
  34. 34.
    Pawley JB (ed) (2006) Handbook of biological confocal microscopy. Springer, Boston. Accessed 24 Aug 2011
  35. 35.
    Zhang Z, Davies K, Prostak J, Fenstermacher J, Chopp M (1999) Quantitation of microvascular plasma perfusion and neuronal microtubule-associated protein in ischemic mouse brain by laser-scanning confocal microscopy. J Cereb Blood Flow Metab 19(1):68–78PubMedCrossRefGoogle Scholar
  36. 36.
    Villringer A, Them A, Lindauer U, Einhäupl K, Dirnagl U (1994) Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circ Res 75(1):55–62PubMedCrossRefGoogle Scholar
  37. 37.
    Serduc R, Vérant P, Vial J-C, Farion R, Rocas L, Rémy C et al (2006) In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvasculature. Int J Radiat Oncol Biol Phys 64(5):1519–1527PubMedCrossRefGoogle Scholar
  38. 38.
    Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF et al (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4(2):e22PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32(7):1277–1309PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Chaigneau E, Oheim M, Audinat E, Charpak S (2003) Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci U S A 100(22):13081–13086PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Göbel W, Helmchen F (2007) In vivo calcium imaging of neural network function. Physiology (Bethesda) 22(6):358–365CrossRefGoogle Scholar
  42. 42.
    Lütcke H, Helmchen F (2011) Two-photon imaging and analysis of neural network dynamics. Rep Prog Phys 74(8):086602CrossRefGoogle Scholar
  43. 43.
    Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37PubMedCrossRefGoogle Scholar
  44. 44.
    Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P (2000) A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28(4):213–223PubMedCrossRefGoogle Scholar
  45. 45.
    Rochefort NL, Jia H, Konnerth A (2008) Calcium imaging in the living brain: prospects for molecular medicine. Trends Mol Med 14(9):389–399PubMedCrossRefGoogle Scholar
  46. 46.
    Kerr JND, de Kock CPJ, Greenberg DS, Bruno RM, Sakmann B, Helmchen F (2007) Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J Neurosci 27(48):13316–13328PubMedCrossRefGoogle Scholar
  47. 47.
    Tian G-F, Takano T, Lin JH-C, Wang X, Bekar L, Nedergaard M (2006) Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 58(7):773–787PubMedCrossRefGoogle Scholar
  48. 48.
    Takano T, Han X, Deane R, Zlokovic B, Nedergaard M (2007) Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 1097:40–50PubMedCrossRefGoogle Scholar
  49. 49.
    Riera J, Hatanaka R, Uchida T, Ozaki T, Kawashima R (2011) Quantifying the uncertainty of spontaneous Ca2+ oscillations in astrocytes: particulars of Alzheimer’s disease. Biophys J 101(3):554–564PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Wilson NR, Runyan CA, Wang FL, Sur M (2012) Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488(7411):343–8. Accessed 9 Aug 2012
  51. 51.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268PubMedCrossRefGoogle Scholar
  52. 52.
    Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2(3):e299PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Yaseen MA, Srinivasan VJ, Sakadzić S, Wu W, Ruvinskaya S, Vinogradov SA et al (2009) Optical monitoring of oxygen tension in cortical microvessels with confocal microscopy. Opt Express 17(25):22341–22350PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Huppé-Gourgues F, Bickford ME, Boire D, Ptito M, Casanova C (2006) Distribution, morphology, and synaptic targets of corticothalamic terminals in the cat lateral posterior-pulvinar complex that originate from the posteromedial lateral suprasylvian cortex. J Comp Neurol 497(6):847–863PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Casanova C (2004) The visual functions of the pulvinar. The visual neurosciences. MIT, Cambridge, pp 592–608Google Scholar
  56. 56.
    Guillery RW, Sherman SM (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33(2):163–175PubMedCrossRefGoogle Scholar
  57. 57.
    Sherman SM, Guillery RW (2011) Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol 106(3):1068–77. Accessed 8 Aug 2011
  58. 58.
    Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100(3):1059–1064PubMedCrossRefGoogle Scholar
  59. 59.
    Cauli B, Tong X-K, Rancillac A, Serluca N, Lambolez B, Rossier J et al (2004) Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24(41):8940–8949PubMedCrossRefGoogle Scholar
  60. 60.
    Nichols AJ, Evans CL (2011) Video-rate scanning confocal microscopy and microendoscopy. J Vis Exp (56). Accessed 5 Oct 2012.
  61. 61.
    Pierce M, Yu D, Richards-Kortum R (2011) High-resolution fiber-optic microendoscopy for in situ cellular imaging. J Vis Exp (47). Accessed 9 Aug 2011
  62. 62.
    Vincent P, Maskos U, Charvet I, Bourgeais L, Stoppini L, Leresche N et al (2006) Live imaging of neural structure and function by fibred fluorescence microscopy. EMBO Rep 7(11):1154–1161PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Flusberg BA, Cocker ED, Piyawattanametha W, Jung JC, Cheung ELM, Schnitzer MJ (2005) Fiber-optic fluorescence imaging. Nat Methods 2(12):941–950PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Franceschini MA, Radhakrishnan H, Thakur K, Wu W, Ruvinskaya S, Carp S et al (2010) The effect of different anesthetics on neurovascular coupling. Neuroimage 51(4):1367–1377PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Garaschuk O, Milos R-I, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1(1):380–386PubMedCrossRefGoogle Scholar
  66. 66.
    Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Sullivan MR, Nimmerjahn A, Sarkisov DV, Helmchen F, Wang SS-H (2005) In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol 94(2):1636–1644PubMedCrossRefGoogle Scholar
  68. 68.
    Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. Academic Press, Elsevier, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Samuel Bélanger
    • 1
    Email author
  • Bruno Oliveira Ferreira de Souza
    • 2
  • Philippe Pouliot
    • 1
    • 3
  • Christian Casanova
    • 2
  • Frédéric Lesage
    • 1
    • 3
  1. 1.Département de Génie ÉlectriqueÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Laboratoire des Neurosciences de la Vision, École d’OptométrieUniversité de MontréalMontréalCanada
  3. 3.Research CenterMontreal Heart InstituteMontréalCanada

Personalised recommendations