Role of Text Mining in Early Identification of Potential Drug Safety Issues

Part of the Methods in Molecular Biology book series (MIMB, volume 1159)

Abstract

Drugs are an important part of today’s medicine, designed to treat, control, and prevent diseases; however, besides their therapeutic effects, drugs may also cause adverse effects that range from cosmetic to severe morbidity and mortality. To identify these potential drug safety issues early, surveillance must be conducted for each drug throughout its life cycle, from drug development to different phases of clinical trials, and continued after market approval. A major aim of pharmacovigilance is to identify the potential drug–event associations that may be novel in nature, severity, and/or frequency. Currently, the state-of-the-art approach for signal detection is through automated procedures by analyzing vast quantities of data for clinical knowledge. There exists a variety of resources for the task, and many of them are textual data that require text analytics and natural language processing to derive high-quality information. This chapter focuses on the utilization of text mining techniques in identifying potential safety issues of drugs from textual sources such as biomedical literature, consumer posts in social media, and narrative electronic medical records.

Key words

Text mining Data mining Natural language processing Biomedical literature mining Pharmacovigilance Drug safety surveillance Adverse drug reaction Drug–drug interactions 

References

  1. 1.
    World Health Organization (1966) International drug monitoring: the role of the hospital. In: Technical report series no. 425. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Pirmohamed M, Breckenridge AM, Kitteringham NR et al (1998) Adverse drug reactions. BMJ 316:1295–1298PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Patel P, Zed PJ (2002) Drug-related visits to the emergency department: how big is the problem? Pharmacotherapy 22:915–923PubMedCrossRefGoogle Scholar
  4. 4.
    Juntti-Patinen L, Neuvonen PJ (2002) Drug-related deaths in a university central hospital. Eur J Clin Pharmacol 58:479–482PubMedCrossRefGoogle Scholar
  5. 5.
    Moore TJ, Cohen MR, Furberg CD (2007) Serious adverse drug events reported to the Food and Drug Administration, 1998–2005. Arch Intern Med 167:1752–1759PubMedCrossRefGoogle Scholar
  6. 6.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205PubMedCrossRefGoogle Scholar
  7. 7.
    Jha AK, Kuperman GJ, Rittenberg E et al (2001) Identifying hospital admissions due to adverse drug events using a computer-based monitor. Pharmacoepidemiol Drug Saf 10:113–119PubMedCrossRefGoogle Scholar
  8. 8.
    Griffin MR, Stein CM, Ray WA (2004) Postmarketing surveillance for drug safety: surely we can do better. Clin Pharmacol Ther 75:491–494PubMedCrossRefGoogle Scholar
  9. 9.
    Edwards IR, Aronson JK (2000) Adverse drug reactions: definitions, diagnosis, and management. Lancet 356:1255–1259PubMedCrossRefGoogle Scholar
  10. 10.
    Fliri AF, Loging WT, Thadeio PF et al (2005) Analysis of drug-induced effect patterns to link structure and side effects of medicines. Nat Chem Biol 1:389–397PubMedCrossRefGoogle Scholar
  11. 11.
    Bender A, Scheiber J, Glick M et al (2007) Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem 2:861–873PubMedCrossRefGoogle Scholar
  12. 12.
    Campillos M, Kuhn M, Gavin AC et al (2008) Drug target identification using side-effect similarity. Science 321:263–266PubMedCrossRefGoogle Scholar
  13. 13.
    Fuzuzaki M, Seki M, Kashima H et al (2009) Side effect prediction using cooperative pathways. In: IEEE international conference on bioinformatics and biomedicine. Washington, DC, pp 142–147Google Scholar
  14. 14.
    Scheiber J, Chen B, Milik M et al (2009) Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J Chem Inf Model 49:308–317PubMedCrossRefGoogle Scholar
  15. 15.
    Scheiber J, Jenkins JL, Sukuru SC et al (2009) Mapping adverse drug reactions in chemical space. J Med Chem 52:3103–3107PubMedCrossRefGoogle Scholar
  16. 16.
    Xie L, Li J, Bourne PE (2009) Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol 5:e1000387PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hammann F, Gutmann H, Vogt N et al (2010) Prediction of adverse drug reactions using decision tree modeling. Clin Pharmacol Ther 88:52–59PubMedCrossRefGoogle Scholar
  18. 18.
    Yamanishi Y, Kotera M, Kanehisa M et al (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26:i246–i254PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Brouwers L, Iskar M, Zeller G et al (2011) Network neighbors of drug targets contribute to drug side-effect similarity. PLoS One 6:e22187PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Pauwels E, Stoven V, Yamanishi Y (2011) Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics 12:169PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Pouliot Y, Chiang AP, Butte AJ (2011) Predicting adverse drug reactions using publicly available PubChem BioAssay data. Clin Pharmacol Ther 90:90–99PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367PubMedCentralPubMedGoogle Scholar
  23. 23.
    Lindquist M, Edwards IR (2001) The WHO Programme for International Drug Monitoring, its database, and the technical support of the Uppsala Monitoring Center. J Rheumatol 28:1180–1187PubMedGoogle Scholar
  24. 24.
    Szarfman A, Machado SG, O’Neill RT (2002) Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug Saf 25:381–392PubMedCrossRefGoogle Scholar
  25. 25.
    Hauben M, Reich L, Chung S (2004) Postmarketing surveillance of potentially fatal reactions to oncology drugs: potential utility of two signal-detection algorithms. Eur J Clin Pharmacol 60:747–750PubMedCrossRefGoogle Scholar
  26. 26.
    Chan KA, Hauben M (2005) Signal detection in pharmacovigilance: empirical evaluation of data mining tools. Pharmacoepidemiol Drug Saf 14:597–599PubMedCrossRefGoogle Scholar
  27. 27.
    Berlowitz DR, Miller DR, Oliveria SA et al (2006) Differential associations of beta-blockers with hemorrhagic events for chronic heart failure patients on warfarin. Pharmacoepidemiol Drug Saf 15:799–807PubMedCrossRefGoogle Scholar
  28. 28.
    Bjornsson E, Olsson R (2006) Suspected drug-induced liver fatalities reported to the WHO database. Dig Liver Dis 38:33–38PubMedCrossRefGoogle Scholar
  29. 29.
    Hauben M, Reich L, Gerrits CM (2006) Reports of hyperkalemia after publication of RALES: a pharmacovigilance study. Pharmacoepidemiol Drug Saf 15:775–783PubMedCrossRefGoogle Scholar
  30. 30.
    Brown JS, Kulldorff M, Chan KA et al (2007) Early detection of adverse drug events within population-based health networks: application of sequential testing methods. Pharmacoepidemiol Drug Saf 16:1275–1284PubMedCrossRefGoogle Scholar
  31. 31.
    Jin HD, Chen J, He HX et al (2008) Mining unexpected temporal associations: applications in detecting adverse drug reactions. IEEE Trans Inf Technol Biomed 12:488–500PubMedCrossRefGoogle Scholar
  32. 32.
    Matthews EJ, Kruhlak NL, Benz RD et al (2009) Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: Part C: use of QSAR and an expert system for the estimation of the mechanism of action of drug-induced hepatobiliary and urinary tract toxicities. Regul Toxicol Pharmacol 54:43–65PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X, Hripcsak G, Friedman C (2009) Characterizing environmental and phenotypic associations using information theory and electronic health records. BMC Bioinformatics 10(Suppl 9):S13PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Wang X, Hripcsak G, Markatou M et al (2009) Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc 16:328–337PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Harpaz R, Chase HS, Friedman C (2010) Mining multi-item drug adverse effect associations in spontaneous reporting systems. BMC Bioinformatics 11(Suppl 9):S7PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Leaman R, Wojtulewicz L, Sullivan R et al (2010) Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. In: Workshop on biomedical natural language processing, pp 117–125Google Scholar
  37. 37.
    Wang X, Chase H, Markatou M et al (2010) Selecting information in electronic health records for knowledge acquisition. J Biomed Inform 43:595–601PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Chee BW, Berlin R, Schatz B (2011) Predicting adverse drug events from personal health messages. AMIA Annu Symp Proc 2011:217–226, Washington, DCPubMedCentralPubMedGoogle Scholar
  39. 39.
    Harpaz R, Perez H, Chase HS et al (2011) Biclustering of adverse drug events in the FDA’s spontaneous reporting system. Clin Pharmacol Ther 89:243–250PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ji Y, Ying H, Dews P et al (2011) A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance. IEEE Trans Inf Technol Biomed 15:428–437PubMedCrossRefGoogle Scholar
  41. 41.
    Shetty KD, Dalal SR (2011) Using information mining of the medical literature to improve drug safety. J Am Med Inform Assoc 18:668–674PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Sohn S, Kocher JP, Chute CG et al (2011) Drug side effect extraction from clinical narratives of psychiatry and psychology patients. J Am Med Inform Assoc 18(Suppl 1):i144–i149PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Zorych I, Madigan D, Ryan P et al (2011) Disproportionality methods for pharmacovigilance in longitudinal observational databases. Stat Methods Med Res 22:39–56PubMedCrossRefGoogle Scholar
  44. 44.
    Harpaz R, Vilar S, Dumouchel W et al (2012) Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J Am Med Inform Assoc 20:413–419PubMedCrossRefGoogle Scholar
  45. 45.
    Liu M, McPeek Hinz ER, Matheny ME et al (2012) Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records. J Am Med Inform Assoc 20:420–426PubMedCrossRefGoogle Scholar
  46. 46.
    Liu M, Wu Y, Chen Y et al (2012) Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J Am Med Inform Assoc 19:e28–e35PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Warrer P, Hansen EH, Juhl-Jensen L et al (2012) Using text-mining techniques in electronic patient records to identify ADRs from medicine use. Br J Clin Pharmacol 73:674–684PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Yoon D, Park MY, Choi NK et al (2012) Detection of adverse drug reaction signals using an electronic health records database: comparison of the Laboratory Extreme Abnormality Ratio (CLEAR) algorithm. Clin Pharmacol Ther 91:467–474PubMedCrossRefGoogle Scholar
  49. 49.
    Scripture CD, Figg WD (2006) Drug interactions in cancer therapy. Nat Rev Cancer 6:546–558PubMedCrossRefGoogle Scholar
  50. 50.
    Hale R (2005) Text mining: getting more value from literature resources. Drug Discov Today 10:377–379PubMedCrossRefGoogle Scholar
  51. 51.
    Cohen AM, Hersh WR (2005) A survey of current work in biomedical text mining. Brief Bioinform 6:57–71PubMedCrossRefGoogle Scholar
  52. 52.
    Van De Belt TH, Engelen LJ, Berben SA et al (2010) Definition of Health 2.0 and Medicine 2.0: a systematic review. J Med Internet Res 12:e18CrossRefGoogle Scholar
  53. 53.
    Wishart DS, Knox C, Guo AC et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Knox C, Law V, Jewison T et al (2010) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Segura-Bedmar I, Crespo M, de Pablo-Sanchez C et al (2010) Resolving anaphoras for the extraction of drug–drug interactions in pharmacological documents. BMC Bioinformatics 11(Suppl 2):S1PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Segura-Bedmar I, Martinez P, de Pablo-Sanchez C (2011) A linguistic rule-based approach to extract drug–drug interactions from pharmacological documents. BMC Bioinformatics 12(Suppl 2):S1PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Jiang J, Zhai C (2007) An empirical study of tokenization strategies for biomedical information retrieval. Inf Retr 10:341–363CrossRefGoogle Scholar
  58. 58.
    Porter M (1997) An algorithm for suffix stripping. In: Sparck Jones K, Willett P (eds) Readings in information retrieval. Morgan Kaufmann Publishers Inc., San Francisco, CA, pp 313–6Google Scholar
  59. 59.
    Porter M (2001) Snowball: a language for stemming algorithms. Available from: http://snowball.tartarus.org/texts/introduction.html
  60. 60.
    Burns PR (2013) MorphAdorner v2: a Java Library for the morphological adornment of English language texts. Northwestern University, Evanston, ILGoogle Scholar
  61. 61.
    Paulussen H, Martin W (1992) DILEMMA-2: a lemmatizer-tagger for medical abstracts. In: Third conference on applied natural language processingGoogle Scholar
  62. 62.
    Smith L, Rindflesch T, Wilbur WJ (2004) MedPost: a part-of-speech tagger for bioMedical text. Bioinformatics 20:2320–2321PubMedCrossRefGoogle Scholar
  63. 63.
    Divita G, Browne A, Loane R (2006) dTagger: a POS Tagger. AMIA Annu Symp Proc 2006:200–203PubMedCentralGoogle Scholar
  64. 64.
    Tsuruoka Y, Tateishi Y, Kim J-D et al (2005) Developing a robust part-of-speech tagger for biomedical text. Lect Notes Comput Sci 3746:382–392CrossRefGoogle Scholar
  65. 65.
    Klein D, Manning C (2003) Accurate unlexicalized parsing. In: Proceedings of the 41st meeting of the Association for Computational Linguistics, vol 2003, pp 423–430Google Scholar
  66. 66.
    McClosky D (2006) Effective self-training for parsing. In: Proceedings of North American chapter of the Association for Computational Linguistics, vol 2006, pp 152–159Google Scholar
  67. 67.
    Grinberg D, Lafferty J, Sleator D (1995) A robust parsing algorithm for link grammars. In: Proceedings of the fourth international workshop on parsing technologies, vol 1995Google Scholar
  68. 68.
    Open Health Natural Language Processing (OHNLP) ConsortiumGoogle Scholar
  69. 69.
    Savova GK, Masanz JJ, Ogren PV et al (2010) Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 17:507–513PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Unstructured Information Management Architecture (UIMA). Available from: http://uima-framework.sourceforge.net
  71. 71.
    Mitchell KJ, Becich MJ, Berman JJ et al (2004) Implementation and evaluation of a negation tagger in a pipeline-based system for information extract from pathology reports. Stud Health Technol Inform 107:663–667PubMedGoogle Scholar
  72. 72.
    Denny JC, Smithers JD, Miller RA et al (2003) “Understanding” medical school curriculum content using KnowledgeMap. J Am Med Inform Assoc 10:351–362PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Denny J, Peterson J (2007) Identifying QT prolongation from ECG impressions using natural language processing and negation detection. Stud Health Technol Inform 129: 1283–1288PubMedCentralGoogle Scholar
  74. 74.
    Denny JC, Pr I, Wehbe FH et al (2003) The KnowledgeMap project: development of a concept-based medical school curriculum database. AMIA Annu Symp Proc 2003:195–199PubMedCentralGoogle Scholar
  75. 75.
    Denny JC, Soriano RP, Stein G et al (2009) POGOe: a national repository of geriatric education materials. Proc AMIA Annu Fall Symp 2009:1–192Google Scholar
  76. 76.
    Denny JC, Spickard A, Miller RA et al (2005) Identifying UMLS concepts from ECG impressions using KnowledgeMap. AMIA Annu Symp Proc 2005:196–200PubMedCentralGoogle Scholar
  77. 77.
    Denny JC, Miller RA, Waitman LR et al (2009) Identifying QT prolongation from ECG impressions using a general-purpose Natural Language Processor. Int J Med Inform 78(Suppl 1):S34–S42PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Friedman C, Alderson PO, Austin JH et al (1994) A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1:161–174PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Hripcsak G, Friedman C, Alderson PO et al (1995) Unlocking clinical data from narrative reports: a study of natural language processing. Ann Intern Med 122:681–688PubMedCrossRefGoogle Scholar
  80. 80.
    Hripcsak G, Austin JH, Alderson PO et al (2002) Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports. Radiology 224:157–163PubMedCrossRefGoogle Scholar
  81. 81.
    Friedman C (1997) Towards a comprehensive medical language processing system: methods and issues. Proc AMIA Annu Fall Symp 1997:595–599Google Scholar
  82. 82.
    Friedman C, Knirsch C, Shagina L et al (1999) Automating a severity score guideline for community-acquired pneumonia employing medical language processing of discharge summaries. Proc AMIA Symp 1999:256–260Google Scholar
  83. 83.
    Aronson AR, Lang FM (2010) An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 17:229–236PubMedCentralPubMedGoogle Scholar
  84. 84.
    Ruch P, Gobeill J, Lovis C et al (2008) Automatic medical encoding with SNOMED categories. BMC Med Inform Decis Mak 8(Suppl 1):S6PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Xu H, Stenner SP, Doan S et al (2010) MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc 17:19–24PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Gold S, Elhadad N, Zhu X et al (2008) Extracting structured medication event information from discharge summaries. AMIA Annu Symp Proc 2008:237–241PubMedCentralGoogle Scholar
  87. 87.
    Hanisch D, Fundel K, Mevissen HT et al (2005) ProMiner: rule-based protein and gene entity recognition. BMC Bioinformatics 6(Suppl 1):S14PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Meystre SM, Thibault J, Shen S et al (2010) Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents. J Am Med Inform Assoc 17:559–562PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Cohen B, Hunter L (2004) Natural language processing and systems biology. In: Pereira F, Dubitzky W (eds) Artificial intelligence methods and tools for systems biology. Springer, NetherlandsGoogle Scholar
  90. 90.
    Krauthammer M, Nenadic G (2004) Term identification in the biomedical literature. J Biomed Inform 37:512–526PubMedCrossRefGoogle Scholar
  91. 91.
    Leaman R, Gonzalez G (2008) BANNER: an executable survey of advances in biomedical named entity recognition. Pac Symp Biocomput 2008:652–663Google Scholar
  92. 92.
    Mahbub Chowdhury F, Lavelli A (2010) Disease mention recognition with specific features. In: Proceedings of the 2010 workshop on biomedical natural language processing (BioNLP), vol 2010, p 91–98Google Scholar
  93. 93.
    Jiang M, Chen Y, Liu M et al (2011) A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc 18:601–606PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Savova GK, Coden AR, Sominsky IL et al (2008) Word sense disambiguation across two domains: biomedical literature and clinical notes. J Biomed Inform 41:1088–1100PubMedCrossRefGoogle Scholar
  95. 95.
    Jimeno-Yepes AJ, McInnes BT, Aronson AR (2011) Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation. BMC Bioinformatics 12:223PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Stevenson M, Agirre E, Soroa A (2012) Exploiting domain information for Word Sense Disambiguation of medical documents. J Am Med Inform Assoc 19:235–240PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Uzuner O, South BR, Shen S et al (2011) 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 18:552–556PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Haerian K, Varn D, Vaidya S et al (2012) Detection of pharmacovigilance-related adverse events using electronic health records and automated methods. Clin Pharmacol Ther 92:228–234PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Leitner F, Mardis SA, Krallinger M et al (2010) An overview of BioCreative II.5. IEEE/ACM Trans Comput Biol Bioinform 7:385–399PubMedCrossRefGoogle Scholar
  100. 100.
    Segura-Bedmar I, Martinez P, Sanchez-Cisneros D (2011) The 1st DDIExtraction-2011 challenge task: extraction of drug–drug interactions from biomedical texts. In: Proceedings of workshop on first challenge task: drug–drug interaction extraction, vol 2011, p 1–9Google Scholar
  101. 101.
    Karimi S, Kim SN, Cavedon L (2011) Drug side-effects: what do patients forums reveal? In: The second international workshop on Web science and information exchange in the medical Web. ACM, GlasgowGoogle Scholar
  102. 102.
    Tari L, Anwar S, Liang S et al (2010) Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 26:i547–i553PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Lependu P, Iyer SV, Fairon C et al (2012) Annotation analysis for testing drug safety signals using unstructured clinical notes. J Biomed Semantics 3(Suppl 1):S5PubMedCentralPubMedGoogle Scholar
  104. 104.
    Vilar S, Harpaz R, Santana L et al (2012) Enhancing adverse drug event detection in electronic health records using molecular structure similarity: application to pancreatitis. PLoS One 7:e41471PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    LePendu P, Iyer SV, Bauer-Mehren A et al (2013) Pharmacovigilance using clinical notes. Clin Pharmacol Ther 93:547–555PubMedCrossRefGoogle Scholar
  106. 106.
    Leeper NJ, Bauer-Mehren A, Iyer SV et al (2013) Practice-based evidence: profiling the safety of cilostazol by text-mining of clinical notes. PLoS One 8:e63499PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Duke JD, Han X, Wang Z et al (2012) Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions. PLoS Comput Biol 8:e1002614PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Gurulingappa H, Toldo L, Rajput AM et al (2013) Automatic detection of adverse events to predict drug label changes using text and data mining techniques. Pharmacoepidemiol Drug Saf 22:1189–1194PubMedCrossRefGoogle Scholar
  109. 109.
    Benton A, Ungar L, Hill S et al (2011) Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform 44:989–996PubMedGoogle Scholar
  110. 110.
    Henriksson A, Kvist M, Hassel M et al (2012) Exploration of adverse drug reactions in semantic vector space models of clinical text. In: Proceedings of the 29th international conference on machine learning, vol 2012. Edinburgh, ScotlandGoogle Scholar
  111. 111.
    Yang CC, Yang H, Jiang L et al (2012) Social media mining for drug safety signal detection. In: SHB '12 Proceedings of the 2012 international workshop on smart health and wellbeing, vol 2012. ACM, pp 33–40Google Scholar
  112. 112.
    Nikfarjam A, Gonzalez GH (2011) Pattern mining for extraction of mentions of adverse drug reactions from user comments. AMIA Annu Symp Proc 2011:1019–1026PubMedCentralPubMedGoogle Scholar
  113. 113.
    Wang W, Haerian K, Salmasian H et al (2011) A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations. AMIA Annu Symp Proc 2011:1464–1470PubMedCentralPubMedGoogle Scholar
  114. 114.
    Liu Y, Lependu P, Iyer S et al (2012) Using temporal patterns in medical records to discern adverse drug events from indications. AMIA Summits Transl Sci Proc 2012:47–56PubMedCentralPubMedGoogle Scholar
  115. 115.
    Bisgin H, Liu Z, Fang H et al (2011) Mining FDA drug labels using an unsupervised learning technique: topic modeling. BMC Bioinformatics 12(Suppl 10):S11PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Yang C, Srinivasan P, Polgreen PM (2012) Automatic adverse drug events detection using letters to the editor. AMIA Annu Symp Proc 2012:1030–1039PubMedCentralPubMedGoogle Scholar
  117. 117.
    Gurulingappa H, Mateen-Rajput A, Toldo L (2012) Extraction of potential adverse drug events from medical case reports. J Biomed Semantics 3:15PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Gurulingappa H, Rajput AM, Roberts A et al (2012) Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J Biomed Inform 45:885–892PubMedCrossRefGoogle Scholar
  119. 119.
    Bjorne J, Airola A, Pahikkala T et al (2011) Drug–drug interaction extraction from biomedical texts with SVM and RLS classifiers. In: Proceedings of the 1st challenge task on drug–drug interaction extraction (DDI Extraction 2011), September 2011, Huelva, Spain, pp 35–42Google Scholar
  120. 120.
    Thomas P, Neves M, Solt I et al (2011) Relation extraction for drug–drug interactions using ensemble learning. In: Proceedings of the 1st challenge task on drug–drug interaction extraction (DDI Extraction 2011), September 2011. Huelva, SpainGoogle Scholar
  121. 121.
    Segura-Bedmar I, Martinez P, de Pablo-Sanchez C (2011) Using a shallow linguistic kernel for drug–drug interaction extraction. J Biomed Inform 44:789–804PubMedCrossRefGoogle Scholar
  122. 122.
    Zhang Y, Lin H, Yang Z et al (2012) A single kernel-based approach to extract drug–drug interactions from biomedical literature. PLoS One 7:e48901PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Percha B, Garten Y, Altman RB (2012) Discovery and explanation of drug–drug interactions via text mining. Pac Symp Biocomput 2012:410–421Google Scholar
  124. 124.
    Kolchinsky A, Lourenco A, Li L et al (2013) Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug–drug interactions. Pac Symp Biocomput 2013:409–420Google Scholar
  125. 125.
    Boyce R, Gardner G, Harkema H (2012) Using natural language processing to identify pharmacokinetic drug–drug interactions described in drug package inserts. In: Proceedings of the 2012 workshop on biomedical natural language processing (BioNLP 2012), June 8, 2012, Association for Computational Linguistics, Montreal, Canada, p 206–213Google Scholar
  126. 126.
    He L, Yang Z, Zhao Z et al (2013) Extracting drug–drug interaction from the biomedical literature using a stacked generalization-based approach. PLoS One 8:e65814PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Vilar S, Harpaz R, Uriarte E et al (2012) Drug–drug interaction through molecular structure similarity analysis. J Am Med Inform Assoc 19:1066–1074PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Kuhn M, Campillos M, Letunic I et al (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6:343PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Kuhn M, von Mering C, Campillos M et al (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36:D684–D688PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceNew Jersey Institute of Technology, University HeightsNewarkUSA
  2. 2.Institute of Business Intelligence, Guangdong University of Foreign Studies, Sun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of Computer Science and TechnologyHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenPeople’s Republic of China

Personalised recommendations