Skip to main content

Embryo Selection Using Metabolomics

  • Protocol
  • First Online:
Human Fertility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1154))

Abstract

Faced with an increasing demand to select one embryo to transfer back to patients, a number of techniques are being developed to assist in discriminating differences within the cohort of a patient’s embryos. A new and emerging technology which allows us to measure the profile of different metabolites in embryo culture media and formulate a viability score correlated to implantation potential is metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo [letter]. Lancet 2(8085):366

    Article  CAS  PubMed  Google Scholar 

  2. Trounson A, Mohr L (1983) Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305(5936):707–709

    Article  CAS  PubMed  Google Scholar 

  3. Lutjen P, Trounson A, Leeton J, Findlay J, Wood C, Renou P (1984) The establishment and maintenance of pregnancy using in vitro fertilization and embryo donation in a patient with primary ovarian failure. Nature 307(5947):174–175

    Article  CAS  PubMed  Google Scholar 

  4. Society for Assisted Reproduction Technology (SART) 2009 data. https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?ClinicPKID=0

  5. De MJ, Goossens V, Bhattacharya S, Castilla JA, Ferraretti AP, Korsak V et al (2010) Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum Reprod 25(8):1851–1862

    Article  Google Scholar 

  6. Adashi EY, Barri PN, Berkowitz R, Braude P, Bryan E, Carr J et al (2003) Infertility therapy-associated multiple pregnancies (births): an ongoing epidemic. Reprod Biomed Online 7(5):515–542

    Article  PubMed  Google Scholar 

  7. Ledger WL, Anumba D, Marlow N, Thomas CM, Wilson EC (2006) The costs to the NHS of multiple births after IVF treatment in the UK. BJOG 113(1):21–25

    Article  PubMed  Google Scholar 

  8. Cummins J, Breen T, Harrison K, Shaw J, Wilson L, Hennessey J (1986) A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J In Vitro Fert Embryo Transf 3:284–295

    Article  CAS  PubMed  Google Scholar 

  9. Edwards R, Fishel S, Cohen J (1984) Factors influencing the success of in vitro fertilization for alleviating human infertility. J In Vitro Fert Embryo Transf 1:3–23

    Article  CAS  PubMed  Google Scholar 

  10. De Neubourg D, Gerris J (2003) Single embryo transfer—state of the art. Reprod Biomed Online 7(6):615–622

    Article  PubMed  Google Scholar 

  11. Sakkas D, Gardner DK (2004) Evaluation of embryo quality. In: Gardner DK, Weissman A, Howles C, Shoham Z (eds) Assisted reproduction technology laboratory and clinical perspectives, 2nd edn. Martin Dunitz Press, London, pp 211–234

    Google Scholar 

  12. Sakkas D, Gardner DK (2005) Noninvasive methods to assess embryo quality. Curr Opin Obstet Gynecol 17(3):283–288

    Article  Google Scholar 

  13. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB (2004) Single blastocyst transfer: a prospective randomized trial. Fertil Steril 81(3):551–555

    Article  CAS  PubMed  Google Scholar 

  14. Inge GB, Brinsden PR, Elder KT (2005) Oocyte number per live birth in IVF: were Steptoe and Edwards less wasteful? Hum Reprod 20(3):588–592

    Article  PubMed  Google Scholar 

  15. Patrizio P, Sakkas D (2009) From oocyte to baby: a clinical evaluation of the biological efficiency of in vitro fertilization. Fertil Steril 91(4):1061–1066

    Article  PubMed  Google Scholar 

  16. Renard JP, Philippon A, Menezo Y (1980) In-vitro uptake of glucose by bovine blastocysts. J Reprod Fertil 58(1):161–164

    Article  CAS  PubMed  Google Scholar 

  17. Gardner DK, Leese HJ (1987) Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool 242(1):103–105

    Article  CAS  PubMed  Google Scholar 

  18. Lane M, Gardner DK (1996) Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod 11(9):1975–1978

    Article  CAS  PubMed  Google Scholar 

  19. Botros L, Sakkas D, Seli E (2008) Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod 14(12):679–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–378

    Article  CAS  PubMed  Google Scholar 

  21. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875–885

    Article  CAS  PubMed  Google Scholar 

  22. Seli E, Sakkas D, Scott R, Kwok SH, Rosendahl S, Burns DH (2007) Non-invasive metabolomic profiling of embryo culture media using Raman and near infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 88(5):1350–1357

    Article  PubMed  Google Scholar 

  23. Katz-Jaffe MG, Schoolcraft WB, Gardner DK (2006) Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril 86(3):678–685

    Article  CAS  PubMed  Google Scholar 

  24. Katz-Jaffe MG, Gardner DK, Schoolcraft WB (2006) Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil Steril 85(1):101–107

    Article  CAS  PubMed  Google Scholar 

  25. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH (2008) Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril 90(1):77–83

    Article  PubMed  Google Scholar 

  26. Seli E, Vergouw CG, Morita H, Botros L, Roos P, Lambalk CB et al (2010) Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril 94(2):535–542

    Article  PubMed  Google Scholar 

  27. Ahlstrom A, Wikland M, Rogberg L, Barnett JS, Tucker M, Hardarson T (2011) Cross-validation and predictive value of near-infrared spectroscopy algorithms for day-5 blastocyst transfer. Reprod Biomed Online 22(5):477–484

    Google Scholar 

  28. Vergouw CG, Botros LL, Roos P, Lens JW, Schats R, Hompes PG et al (2008) Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod 23(7):1499–1504

    Article  CAS  PubMed  Google Scholar 

  29. Seli E, Bruce C, Botros L, Henson M, Roos P, Judge K et al (2011) Receiver operating characteristic (ROC) analysis of day 5 morphology grading and metabolomic Viability Score on predicting implantation outcome. J Assist Reprod Genet 28(2):137–144

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hardarson T, Ahlstrom A, Rogberg L, Botros L, Hillensjo T, Westlander G et al (2012) Non-invasive metabolomic profiling of Day 2 and 5 embryo culture media: a prospective randomized trial. Hum Reprod 27:89–96

    Article  CAS  PubMed  Google Scholar 

  31. Blake DA, Farquhar CM, Johnson N, Proctor M (2007) Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev (4):CD002118

    Google Scholar 

  32. Vergouw CG. Metabolomic profiling of culture media by NIR spectroscopy as an adjunct to morphology for selection of a single Day 3 embryo to transfer: a double blind randomised trial (unpublished data)

    Google Scholar 

  33. Sfontouris IA, Lainas GT, Sakkas D, Zorzovilis IZ, Petsas GK, Lainas TG (2013) Non-invasive metabolomic analysis using a commercial NIR instrument for embryo selection. J Hum Reprod Sci 6(2):133–139

    Article  PubMed Central  PubMed  Google Scholar 

  34. Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR et al (2007) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357(1):9–17

    Article  CAS  PubMed  Google Scholar 

  35. Wells D, Alfarawati S, Fragouli E (2008) Use of comprehensive chromosomal screening for embryo assessment: microarrays and CGH. Mol Hum Reprod 14(12):703–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakkas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sakkas, D. (2014). Embryo Selection Using Metabolomics. In: Rosenwaks, Z., Wassarman, P. (eds) Human Fertility. Methods in Molecular Biology, vol 1154. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0659-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0659-8_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0658-1

  • Online ISBN: 978-1-4939-0659-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics