Skip to main content

Heterologous Stable Expression of Terpenoid Biosynthetic Genes Using the Moss Physcomitrella patens

  • Protocol
  • First Online:
Book cover Plant Isoprenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1153))

Abstract

Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as streamlining of large scale Agrobacterium infiltration and upregulation of the upstream pathways, transient in planta heterologous expression quickly reaches limitations when used for production of terpenoids. Stable integration of transgenes into the nuclear genome of the moss Physcomitrella patens has already been widely recognized as a viable alternative for industrial-scale production of biopharmaceuticals. For expression of terpenoid biosynthetic genes, and reconstruction of heterologous pathways, Physcomitrella has unique attributes that makes it a very promising biotechnological host. These features include a high native tolerance to terpenoids, a simple endogenous terpenoid profile, convenient genome editing using homologous recombination, and cultivation techniques that allow up-scaling from single cells in microtiter plates to industrial photo-bioreactors. Beyond its use for functional characterization of terpenoid biosynthetic genes, engineered Physcomitrella can be a green biotechnological platform for production of terpenoids. Here, we describe two complementary and simple procedures for stable nuclear transformation of Physcomitrella with terpenoid biosynthetic genes, selection and cultivation of transgenic lines, and metabolite analysis of terpenoids produced in transgenic moss lines. We also provide tools for metabolic engineering through genome editing using homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viana AAB, Pelegrini PB, Grossi-de-Sá MF (2012) Plant biofarming: novel insights for peptide expression in heterologous systems. Pept Sci 98:416–427

    Article  Google Scholar 

  2. Anterola A, Shanle E, Perroud PF et al (2009) Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens. Transgenic Res 18:655–660

    Article  CAS  PubMed  Google Scholar 

  3. Hamberger B, Bak S (2013) Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Phil Trans R Soc B 368:20120426

    Article  PubMed Central  PubMed  Google Scholar 

  4. Yonekura-Sakakibara K, Hanada K (2011) An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J 66:182–193

    Article  CAS  PubMed  Google Scholar 

  5. Liu Q, Majdi M, Cankar K et al (2011) Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. PLoS One 6:e23255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chen F, Tholl D, Bohlmann J et al (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  7. Aya K, Hiwatashi Y, Kojima M et al (2011) The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nat Commun 22:544

    Article  Google Scholar 

  8. Anterola A, Shanle E (2008) Genomic insights in moss gibberellin biosynthesis. Bryologist 111:218–230

    Article  Google Scholar 

  9. Johri MM (2008) Hormonal regulation in green plant lineage families. Physiol Mol Biol Plants 14:23–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Simonsen HT, Drew DP, Lunde C (2009) Perspectives on using Physcomitrella patens as an alternative production platform for thapsigargin and other terpenoid drug candidates. Perspect Medicin Chem 3:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  11. von Schwartzenberg K, Schultze W, Kassner H (2004) The moss Physcomitrella patens releases a tetracyclic diterpene. Plant Cell Rep 22(10):780–786

    Article  Google Scholar 

  12. Schaefer DG, Zrÿd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi K, Horie K, Hiwatashi Y et al (2010) Endogenous diterpenes derived from ent-daurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol 153:1085–1097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ashton NW, Grimsley NH, Cove DJ (1979) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144:427–435

    Article  CAS  PubMed  Google Scholar 

  15. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cove DJ, Perroud PF, Charron AJ et al (2009) The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harb Protoc 2009(2):69–104

    Google Scholar 

  17. Halpin C, Cooke SE, Barakate A et al (1999) Self-processing 2A-polyproteins—a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J 17:453–459

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Hamberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bach, S.S., King, B.C., Zhan, X., Simonsen, H.T., Hamberger, B. (2014). Heterologous Stable Expression of Terpenoid Biosynthetic Genes Using the Moss Physcomitrella patens . In: Rodríguez-Concepción, M. (eds) Plant Isoprenoids. Methods in Molecular Biology, vol 1153. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0606-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0606-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0605-5

  • Online ISBN: 978-1-4939-0606-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics