Gas Chromatography–Mass Spectrometry Method for Determination of Biogenic Volatile Organic Compounds Emitted by Plants

  • Astrid Kännaste
  • Lucian Copolovici
  • Ülo Niinemets
Part of the Methods in Molecular Biology book series (MIMB, volume 1153)


Gas chromatography–mass spectrometry (GC-MS) is one of the most widely used methods for analyzing the emissions of biogenic volatile organic compounds (VOCs) from plants. Preconcentration of VOCs on the cartridges filled with different adsorbents is a well-accepted method for sampling of headspace. Here, we describe a gas-chromatographic method for determination of different isoprenoids (isoprene, monoterpenes, homoterpenes, and sesquiterpenes). The technique is based on adsorption of compounds of interest on multibed adsorbent cartridges followed by thermodesorption, and detection and analysis by GC-MS.


Cartridge sampling Desorption Gas chromatography Green leaf volatiles Isoprene Mass spectrometry Monoterpenes Sesquiterpenes 


  1. 1.
    Borg-Karlson A-K, Eidmann HH, Lindström M, Norin T, Wiersma N (1985) Odoriferous compounds from the flowers of the conifers Picea abies, Pinus sylvestris and Larix sibirica. Phytochemistry 24(3):455–456CrossRefGoogle Scholar
  2. 2.
    Banthorpe DV (1991) Classification of terpenoids and general procedures for their characterisation. In: Charlwood BV, Banthorpe DV, Harborne JB (eds) Terpenoids. Methods in plant biochemistry, vol 7. Academic, London, pp 1–41Google Scholar
  3. 3.
    Peñuelas J, Llusià J, Estiarte M (1995) Terpenoids: a plant language. Trends Ecol Evol 10(7):289PubMedCrossRefGoogle Scholar
  4. 4.
    Ormeño E, Goldstein A, Niinemets Ü (2011) Extracting and trapping biogenic volatile organic compounds stored in plant species. Trends Anal Chem 30:978–989CrossRefGoogle Scholar
  5. 5.
    Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440CrossRefGoogle Scholar
  6. 6.
    Niinemets Ü, Reichstein M (2002) A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species. Glob Biogeochem Cycle 16(1):1110. doi:1110.1029/2002GB001927 Google Scholar
  7. 7.
    Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. Int J Plant Sci 164(3):S93–S102CrossRefGoogle Scholar
  8. 8.
    Ortega J, Helmig D (2008) Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – part A. Chemosphere 72(3):343–364. doi: 10.1016/j.chemosphere.2007.11.020 PubMedCrossRefGoogle Scholar
  9. 9.
    Bouvier-Brown NC, Holzinger R, Palitzsch K, Goldstein AH (2009) Large emissions of sesquiterpenes and methyl chavicol quantified from branch enclosure measurements. Atmos Environ 43:389–401CrossRefGoogle Scholar
  10. 10.
    Sakulyanontvittaya T, Duhl T, Wiedinmyer C, Helmig D, Matsunaga S, Potosnak M, Milford J, Guenther A (2008) Monoterpene and sesquiterpene emission estimates for the United States. Environmental Science & Technology 42(5):1623–1629. doi: 10.1021/es702274e CrossRefGoogle Scholar
  11. 11.
    Bartelt RJ, Wicklow DT (1999) Volatiles from Fusarium verticillioides (Sacc.) Nirenb. and their attractiveness to nitidulid beetles. J Agric Food Chem 47(6):2447–2454PubMedCrossRefGoogle Scholar
  12. 12.
    Ciccioli P, Brancaleoni E, Frattoni M, Di Palo V, Valentini R, Tirone G, Seufert G, Bertin N, Hansen U, Csiky O, Lenz R, Sharma M (1999) Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. J Geophys Res 104(D7):8077–8094CrossRefGoogle Scholar
  13. 13.
    Arneth A, Niinemets Ü (2010) Induced BVOCs: how to bug our models? Trends Plant Sci 15:118–125PubMedCrossRefGoogle Scholar
  14. 14.
    Fuentes JD, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc 81(7):1537–1575CrossRefGoogle Scholar
  15. 15.
    Cavalli JF, Fernandez X, Lizzani-Cuvelier L, Loiseau AM (2003) Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils. J Agric Food Chem 51(26):7709–7716PubMedCrossRefGoogle Scholar
  16. 16.
    Griffiths DW, Robertson GW, Birch ANE, Brennan RM (1999) Evaluation of thermal desorption and solvent elution combined with polymer entrainment for the analysis of volatiles released by leaves from midge (Dasineura tetensi) resistant and susceptible blackcurrant (Ribes nigrum L.) cultivars. Phytochem Anal 10(6):328–334CrossRefGoogle Scholar
  17. 17.
    Pillonel L, Bossett JO, Tabacchi R (2002) Rapid preconcentration and enrichment techniques for the analysis of food volatiles. A review. Food Science and Technology 35(1):1–14Google Scholar
  18. 18.
    Agelopoulos NG, Pickett JA (1998) Headspace analysis in chemical ecology: effects of different sampling methods on ratios of volatile compounds present in headspace samples. J Chem Ecol 24(7):1161–1172CrossRefGoogle Scholar
  19. 19.
    Agelopoulos NG, Hooper AM, Maniar SP, Pickett JA, Wadhams LJ (1999) A novel approach for isolation of volatile chemicals released by individual leaves of a plant in situ. J Chem Ecol 25(6):1411–1425CrossRefGoogle Scholar
  20. 20.
    Brancaleoni E, Scovaventi M, Frattoni M, Mabilia R, Ciccioli P (1999) Novel family of multi-layer cartridges filled with a new carbon adsorbent for the quantitative determination of volatile organic compounds in the atmosphere. J Chromatogr A 845(1–2):317–328CrossRefGoogle Scholar
  21. 21.
    Helmig D, Bocquet F, Pollmann J, Revermann T (2004) Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments. Atmos Environ 38:557–572CrossRefGoogle Scholar
  22. 22.
    Tholl D, Boland W, Hansel A, Loreto F, Rose USR, Schnitzler J-P (2006) Practical approaches to plant volatile analysis. Plant J 45(4):540–560PubMedCrossRefGoogle Scholar
  23. 23.
    Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther AB, Kesselmeier J, Lerdau MT, Monson RK, Peñuelas J (2011) Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8:2209–2246CrossRefGoogle Scholar
  24. 24.
    Ortega J, Helmig D, Daly RW, Tanner DM, Guenther AB, Herrick JD (2008) Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – part B: applications. Chemosphere 72:365–380PubMedCrossRefGoogle Scholar
  25. 25.
    Helmig D, Greenberg J (1995) Artifact formation from the use of potassium-iodide-based ozone traps during atmospheric sampling of trace organic gases. J High Resolut Chromatogr 18:15–18CrossRefGoogle Scholar
  26. 26.
    Calogirou A, Larsen BR, Brussol C, Duane M, Kotzias D (1996) Decomposition of terpenes by ozone during sampling on Tenax. Anal Chem 68:1499–1506PubMedCrossRefGoogle Scholar
  27. 27.
    Coeur C, Jacob V, Denis I, Foster P (1997) Decomposition of α-pinene and sabinene on solid sorbents, Tenax TA and Carboxen. J Chromatogr A 786:185–187CrossRefGoogle Scholar
  28. 28.
    Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chromatogr A 885:129–151PubMedCrossRefGoogle Scholar
  29. 29.
    Hori H, Tanaka I, Akiyama T (1989) Thermal desorption efficiencies of two-component organic solvents from activated carbon. Am Ind Hygiene Assoc J 50:24–29CrossRefGoogle Scholar
  30. 30.
    Copolovici L, Kännaste A, Niinemets Ü (2009) Gas chromatography-mass spectrometry method for determination of monoterpene and sesquiterpene emissions from stressed plants. Studia Universitatis Babes-Bolyai, Chemia 54:329–339Google Scholar
  31. 31.
    Toome M, Randjärv P, Copolovici L, Niinemets Ü, Heinsoo K, Luik A, Noe SM (2010) Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232:235–243PubMedCrossRefGoogle Scholar
  32. 32.
    Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672PubMedCrossRefGoogle Scholar
  33. 33.
    Opriş O, Copaciu F, Soran ML, Ristoiu D, Niinemets Ü, Copolovici L (2013) Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Safety 87:70–79Google Scholar
  34. 34.
    Niinemets Ü, Copolovici L, Hüve K (2010) High within-canopy variation in isoprene emission potentials in temperate trees: implications for predicting canopy-scale isoprene fluxes. J Geophys Res Biogeosci 115, G04029. doi: 10.1029/2010JG001436 CrossRefGoogle Scholar
  35. 35.
    Ciccioli P, Brancaleoni E, Frattoni M (2002) Sampling of atmospheric volatile organic compounds (VOCs) with sorbent tubes and their analysis by GC-MS. In: Burden FR, Kelvie IM, Forstner U, Guenther A (eds) Environmental monitoring handbook. McGraw-Hill, New York, pp 21.21–21.85Google Scholar
  36. 36.
    He J, Xie M, Tang X, Qi X (2012) Kinetic and mechanistic study on the thermal isomerization of ocimene in the liquid phase. J Phys Org Chem 25:373–378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Astrid Kännaste
    • 1
  • Lucian Copolovici
    • 1
    • 2
  • Ülo Niinemets
    • 1
  1. 1.Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
  2. 2.Institute of Technical and Natural Sciences Research-Development of “Aurel Vlaicu” UniversityAradRomania

Personalised recommendations