Tools for Genetic Engineering of the Yeast Hansenula polymorpha

  • Ruchi Saraya
  • Loknath Gidijala
  • Marten Veenhuis
  • Ida J. van der KleiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1152)


Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years many efforts have led to advances in the development of this microbial host including the generation of expression vectors containing strong constitutive or inducible promoters and a large array of dominant and auxotrophic markers. Moreover, highly efficient transformation procedures used to generate genetically stable strains are now available. Here, we describe these tools as well as the methods for genetic engineering of H. polymorpha.

Key words

Genetic engineering Hansenula polymorpha Methylotrophic yeast Metabolic engineering Heterologous protein production 


  1. 1.
    Gidijala L, Kiel JA, Douma RD et al (2009) An engineered yeast efficiently secreting penicillin. PLoS One 12:e8317CrossRefGoogle Scholar
  2. 2.
    Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358CrossRefGoogle Scholar
  3. 3.
    Faber KN, Harder W, Ab G et al (1995) Review: methylotrophic yeasts as factories for the production of foreign proteins. Yeast 11:1331–1344CrossRefGoogle Scholar
  4. 4.
    Cox H, Mead D, Sudbery P et al (2000) Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter. Yeast 16:1191–1203CrossRefGoogle Scholar
  5. 5.
    Heo JH, Hong WK, Cho EY et al (2003) Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene. FEMS Yeast Res 4:175–184CrossRefGoogle Scholar
  6. 6.
    Kiel JA, Titorenko VI, van der Klei IJ et al (2007) Overproduction of translation elongation factor 1-α (eEF1A) suppresses the peroxisome biogenesis defect in a Hansenula polymorpha pex3 mutant via translational read-through. FEMS Yeast Res 7:1114–1125CrossRefGoogle Scholar
  7. 7.
    Hamilton SR, Bobrowicz P, Bobrowicz B et al (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246CrossRefGoogle Scholar
  8. 8.
    Janowicz ZA, Melber K, Merckelbach A et al (1991) Simultaneous expression of the S and L surface antigens of hepatitis B and formation of mixed particles in the methylotrophic yeast Hansenula polymorpha. Yeast 7:431–433CrossRefGoogle Scholar
  9. 9.
    Brierley RA, Davis GR, Holtz GC (1994) Production of insulin-like growth factor 1 in methylotrophic yeast cells, United States Patent, No. 5324639Google Scholar
  10. 10.
    Mayer AF, Hellmuth K, Schlieker H et al (1999) An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 63:373–381CrossRefGoogle Scholar
  11. 11.
    Rainer Roggenkamp H, Eckart M, Janowicz Z, Hollenberg CP (1986) Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet 202:302–308CrossRefGoogle Scholar
  12. 12.
    Suckow M, Gellissen G (2005) The expression platform based on H. polymorpha Strain RB11 and its derivatives—history, status and perspectives. In: Gellissen G (ed) Hansenula polymorpha. Wiley, Weinheim, pp 105–123Google Scholar
  13. 13.
    Levine DW, Cooney CL (1973) Isolation and characterization of a thermotolerant methanol-utilizing yeast. Appl Microbiol 26:982–990Google Scholar
  14. 14.
    Higgins DR, Cregg JM (1998) Introduction to Pichia pastoris. Methods Mol Biol 103:1–15Google Scholar
  15. 15.
    Gellissen G, Kunze G, Gaillardin C et al (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison. FEMS Yeast Res 5:1079–1096CrossRefGoogle Scholar
  16. 16.
    Gleeson MA, Sudbery PE (1988) Genetic analysis in the methylotrophic yeast Hansenula polymorpha. Yeast 4:293–303CrossRefGoogle Scholar
  17. 17.
    Ramezani-Rad M, Hollenberg CP, Lauber J et al (2003) The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res 4:207–215CrossRefGoogle Scholar
  18. 18.
    Sambrook J, Fritsch EF, Sambrook J (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  19. 19.
    Amberg DC, Burke DJ, Strathern JN (2006) Yeast Colony PCR. Cold Spring Harbor Protocols. 1, prot4170Google Scholar
  20. 20.
    Amberg DC, Burke DJ, Strathern JN (2006) Isolation of Yeast Genomic DNA for Southern Blot Analysis. Cold Spring Harbor Protocols. 1, prot4149Google Scholar
  21. 21.
    Saraya R, Krikken AM, Veenhuis M et al (2011) Peroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1. J Cell Biol 193:885–900CrossRefGoogle Scholar
  22. 22.
    Saraya R, Krikken AM, Kiel JA et al (2012) Novel genetic tools for Hansenula polymorpha. FEMS Yeast Res 12:271–278CrossRefGoogle Scholar
  23. 23.
    Kiel JA, Hilbrands RE, van der Klei IJ et al (1999) Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact. Yeast 15:1059–1078CrossRefGoogle Scholar
  24. 24.
    Haan GJ, van Dijk R, Kiel JA et al (2002) Characterization of the Hansenula polymorpha PUR7 gene and its use as selectable marker for targeted chromosomal integration. FEMS Yeast Res 2:17–24Google Scholar
  25. 25.
    Gietl C, Faber KN, van der Klei IJ et al (1994) Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Proc Natl Acad Sci U S A 91:3151–3155CrossRefGoogle Scholar
  26. 26.
    Gidijala L, van der Klei IJ, Veenhuis M et al (2007) Reprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene. FEMS Yeast Res 7:1160–1167CrossRefGoogle Scholar
  27. 27.
    Kiel JA, Keizer-Gunnink IK, Krause T et al (1995) Heterologous complementation of peroxisome function in yeast: the Saccharomyces cerevisiae PAS3 gene restores peroxisome biogenesis in a Hansenula polymorpha per9 disruption mutant. FEBS Lett 377:434–438CrossRefGoogle Scholar
  28. 28.
    Baerends RJ, Salomons FA, van der Klei IJ et al (1997) Deviant Pex3p levels affect normal peroxisome formation in Hansenula polymorpha: a sharp increase of the protein level induces the proliferation of numerous, small protein-import competent peroxisomes. Yeast 13:1449–1463CrossRefGoogle Scholar
  29. 29.
    Bellu AR, Komori M, van der Klei IJ et al (2001) Peroxisome biogenesis and selective degradation converge at Pex14p. J Biol Chem 276:44570–44574CrossRefGoogle Scholar
  30. 30.
    van der Klei IJ, Hilbrands RE, Swaving GJ et al (1995) The Hansenula polymorpha PER3 gene is essential for the import of PTS1 proteins into the peroxisomal matrix. J Biol Chem 270:17229–17236CrossRefGoogle Scholar
  31. 31.
    Otzen M, Perband U, Wang D et al (2004) Hansenula polymorpha Pex19p is essential for the formation of functional peroxisomal membranes. J Biol Chem 279:19181–19190CrossRefGoogle Scholar
  32. 32.
    Komori M, Rasmussen SW, Kiel JA et al (1997) The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J 16:44–53CrossRefGoogle Scholar
  33. 33.
    Kiel JA, Otzen M, Veenhuis M et al (2005) Obstruction of polyubiquitination affects PTS1 peroxisomal matrix protein import. Biochim Biophys Acta 1745:176–186CrossRefGoogle Scholar
  34. 34.
    Salomons FA, Kiel JAKW, Faber KN et al (2000) Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha Pex14 null mutant. J Biol Chem 275:12603–12611CrossRefGoogle Scholar
  35. 35.
    Faber KN, van Dijk R, Keizer-Gunnink I et al (2002) Import of assembled PTS1 proteins into peroxisomes of the yeast Hansenula polymorpha: yes and no! Biochim Biophys Acta 1591:157–162CrossRefGoogle Scholar
  36. 36.
    Faber KN, Swaving GJ, Faber F et al (1992) Chromosomal targeting of replicating plasmids in the yeast Hansenula polymorpha. J Gen Microbiol 138:2405–2416CrossRefGoogle Scholar
  37. 37.
    Gellissen G., Kang A. H. (2005) Hansenula polymorpha, in Production of Recombinent proteins, WILEY.VCH,Verlag GmbH & Co. KgaA, Weinheim.Google Scholar
  38. 38.
    Tan X, Waterham HR, Veenhuis M et al (1995) The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J Cell Biol 128:307–319CrossRefGoogle Scholar
  39. 39.
    Nagotu S, Saraya R, Otzen M et al (2008) Peroxisome proliferation in Hansenula polymorpha requires Dnm1p which mediates fission but not de novo formation. Biochim Biophys Acta 1783:760–769CrossRefGoogle Scholar
  40. 40.
    Cepinska MN, Veenhuis M, van der Klei IJ et al (2011) Peroxisome fission is associated with reorganization of specific membrane proteins. Traffic 12:925–937CrossRefGoogle Scholar
  41. 41.
    Nagotu S, Krikken AM, Otzen M et al (2008) Peroxisome fission in Hansenula polymorpha requires Mdv1 and Fis1, two proteins also involved in mitochondrial fission. Traffic 9:1471–1484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Ruchi Saraya
    • 1
  • Loknath Gidijala
    • 1
  • Marten Veenhuis
    • 1
  • Ida J. van der Klei
    • 1
    Email author
  1. 1.Molecular Cell Biology, Kluyver Centre for Genomics of Industrial FermentationGroningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenThe Netherlands

Personalised recommendations