Skip to main content

Model-Guided Identification of Gene Deletion Targets for Metabolic Engineering in Saccharomyces cerevisiae

Part of the Methods in Molecular Biology book series (MIMB,volume 1152)

Abstract

Identification of metabolic engineering strategies for rerouting intracellular fluxes towards a desired product is often a challenging task owing to the topological and regulatory complexity of metabolic networks. Genome-scale metabolic models help tackling this complexity through systematic consideration of mass balance and reaction directionality constraints over the entire network. Here, we describe how genome-scale metabolic models can be used for identifying gene deletion targets leading to increased production of the desired product. Vanillin production in Saccharomyces cerevisiae is used as a case study throughout this chapter.

Key words

  • Metabolic engineering
  • Genome-scale metabolic reconstructions
  • Flux balance analysis
  • OptGene
  • Minimization of metabolic adjustment
  • Minimization of metabolite balance

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0563-8_17
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0563-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    CrossRef  CAS  Google Scholar 

  2. Schellenberger J, Park JO, Conrad TM, Palsson BØ (2010) BiGG, a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    CrossRef  Google Scholar 

  3. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    CrossRef  Google Scholar 

  4. Usaite R, Jewett MC, Oliveira AP et al (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 5:319

    CrossRef  Google Scholar 

  5. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102:2685–2689

    CrossRef  CAS  Google Scholar 

  6. Covert MW, Knight EM, Reed JL et al (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–96

    CrossRef  CAS  Google Scholar 

  7. Kim TY, Sohn SB, Kim YB et al (2011) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23:1–7

    CrossRef  Google Scholar 

  8. Osterlund T, Nookaew I, Nielsen J (2011) Fifteen years of large scale metabolic modeling of yeast, developments and impacts. Biotechnol Adv 30:979–988

    CrossRef  Google Scholar 

  9. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering, 1st edn. Academic, San Diego, CA

    Google Scholar 

  10. Hong K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae, a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690

    CrossRef  CAS  Google Scholar 

  11. Patil KR, Akesson M, Nielsen J (2004) Use of genome-scale microbial models for metabolic engineering. Curr Opin Biotechnol 15:64–69

    CrossRef  CAS  Google Scholar 

  12. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    CrossRef  CAS  Google Scholar 

  13. Varma A, Palsson BØ (1993) Metabolic capabilities of Escherichia coli. I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165:477–502

    CrossRef  CAS  Google Scholar 

  14. Varma A, Palsson BØ (1994) Metabolic flux balancing, basic concepts scientific and practical use. Nat Biotechnol 12:994–998

    CrossRef  CAS  Google Scholar 

  15. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    CrossRef  CAS  Google Scholar 

  16. Edwards JS, Ibarra RU, Palsson BØ (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    CrossRef  CAS  Google Scholar 

  17. Famili I, Förster J, Nielsen J, Palsson BØ (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100: 13134–13139

    CrossRef  CAS  Google Scholar 

  18. Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD (2012) Mathematical optimization applications in metabolic networks. Metab Eng 14:672–686

    CrossRef  CAS  Google Scholar 

  19. Patil KR, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6:308

    CrossRef  Google Scholar 

  20. Burgard AP, Pharkya P, Maranas CD (2003) Optknock, a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    CrossRef  CAS  Google Scholar 

  21. Asadollahi M, Maury J, Patil KR et al (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11: 328–334

    CrossRef  CAS  Google Scholar 

  22. Brochado AR, Matos C, Møller BL et al (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:84

    CrossRef  Google Scholar 

  23. Förster J, Famili I, Fu P et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13: 244–253

    CrossRef  Google Scholar 

  24. Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15:1421–1430

    CrossRef  CAS  Google Scholar 

  25. Mo ML, Palsson BØ, Herrgård MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37

    CrossRef  Google Scholar 

  26. Zomorrodi AR, Maranas CD (2010) Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 4:178

    CrossRef  Google Scholar 

  27. Heavner BD, Smallbone K, Barker B et al (2012) Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55

    CrossRef  Google Scholar 

  28. Kumar VS, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8:212

    CrossRef  Google Scholar 

  29. Kumar VS, Maranas CD (2009) GrowMatch, an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5:e1000308

    CrossRef  Google Scholar 

  30. Guijarro JM, Lagunas R (1984) Saccharomyces cerevisiae does not accumulate ethanol against concentration gradient. J Bacteriol 160: 874–878

    CAS  Google Scholar 

  31. Ibarra RU, Edwards JS, Palsson BØ (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:20–23

    CrossRef  Google Scholar 

  32. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117

    CrossRef  Google Scholar 

  33. Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A 102:7695–7700

    CrossRef  CAS  Google Scholar 

  34. Brochado AR, Andrejev S, Maranas CD, Patil KR (2012) Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks. PLoS Comput Biol 8:e1002758

    CrossRef  CAS  Google Scholar 

  35. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    CrossRef  Google Scholar 

  36. Sauer U (2006) Metabolic networks in motion, 13C-based flux analysis. Mol Syst Biol 2:62

    CrossRef  Google Scholar 

  37. Reed JL (2012) Shrinking the metabolic solution space using experimental datasets. PLoS Comput Biol 8:e1002662

    CrossRef  CAS  Google Scholar 

  38. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    CrossRef  CAS  Google Scholar 

  39. Rocha I, Maia P, Evangelista P et al (2010) OptFlux, an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    CrossRef  Google Scholar 

  40. Schellenberger J, Que R, Fleming RMT et al (2011) Quantitative prediction of cellular metabolism with constraint-based models, the COBRA Toolbox v2.0. Nat Protoc 6: 1290–1307

    CrossRef  CAS  Google Scholar 

  41. Cvijovic M, Olivares-Hernández R, Agren R et al (2010) BioMet Toolbox, genome-wide analysis of metabolism. Nucleic Acids Res 38:W144–W149

    CrossRef  CAS  Google Scholar 

  42. Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies for chemical production, accounting for competing pathways. Bioinformatics 26:536–543

    CrossRef  CAS  Google Scholar 

  43. Feist AM, Zielinski CD, Orth JD et al (2010) Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab Eng 12: 173–186

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Raosaheb Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brochado, A.R., Patil, K.R. (2014). Model-Guided Identification of Gene Deletion Targets for Metabolic Engineering in Saccharomyces cerevisiae . In: Mapelli, V. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 1152. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0563-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0563-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0562-1

  • Online ISBN: 978-1-4939-0563-8

  • eBook Packages: Springer Protocols