Skip to main content

QTL Mapping by Pooled-Segregant Whole-Genome Sequencing in Yeast

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1152))

Abstract

Quantitative trait locus (QTL) mapping by pooled-segregant whole-genome sequencing in yeast is a robust methodology for the simultaneous identification of superior genes involved in polygenic traits (e.g., high ethanol tolerance). By crossing two haploid strains with opposite phenotypes, being one of interest, the resulting diploid is sporulated, the meiotic segregants phenotyped, and a pool of selected segregants with the phenotype of interest assembled. The genotyping by pooled-segregant sequencing constitutes a fast and reliable methodology to map all QTL defining the trait of interest. The QTLs can be further analyzed by reciprocal hemizygosity analysis to identify the causative superior alleles that can subsequently be used for yeast strain improvement by targeted genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416: 326–330

    Article  CAS  Google Scholar 

  2. Deutschbauer AM, Davis RW (2005) Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet 37: 1333–1340

    Article  CAS  Google Scholar 

  3. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR et al (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294(5547):1719–1723

    Article  CAS  Google Scholar 

  4. Winzeler EA et al (1998) Direct allelic variation scanning of the yeast genome. Science 281(5380):1194–1197

    Article  CAS  Google Scholar 

  5. Kwok P-Y (2002) SNP genotyping with fluorescence polarization detection. Hum Mutat 19(4):315–323

    Article  CAS  Google Scholar 

  6. Lechner D, Lathrop GM, Gut IG (2002) Large-scale genotyping by mass spectrometry: experience, advances and obstacles. Curr Opin Chem Biol 6(1):31–38

    Article  CAS  Google Scholar 

  7. Hardenbol P, Banér J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, Fakhrai-Rad H et al (2003) Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 21(6):673–678

    Article  CAS  Google Scholar 

  8. Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464(7291):1039–1042

    Article  CAS  Google Scholar 

  9. Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, Molin M (2011) Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res 21:1131–1138

    Article  CAS  Google Scholar 

  10. Swinnen S, Schaerlaekens T, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquie-Moreno M, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res. doi:10.1101/gr.131698.111

    Google Scholar 

  11. Popolo L, Vanoni M, Alberghina L (1982) Control of the yeast cell cycle by protein synthesis. Exp Cell Res 142:69–78

    Article  CAS  Google Scholar 

  12. Sherman F, Hicks J (1991) Micromanipulation and dissection of asci. Methods Enzymol 194: 21–37

    Article  CAS  Google Scholar 

  13. Huxley C, Green ED, Dunham I (1990) Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 6:236

    Article  CAS  Google Scholar 

  14. Duitama J et al (2014) An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Res. doi: 10.1093/nar/gkt1381

  15. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29: 1165–1188

    Article  Google Scholar 

  16. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  Google Scholar 

  17. Douglas AT, Fred W (2008) Growth and manipulation of yeast. Curr Protoc Mol Biol 82:13.2.1–13.2.12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan M. Thevelein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pais, T.M., Foulquié-Moreno, M.R., Thevelein, J.M. (2014). QTL Mapping by Pooled-Segregant Whole-Genome Sequencing in Yeast. In: Mapelli, V. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 1152. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0563-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0563-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0562-1

  • Online ISBN: 978-1-4939-0563-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics