Advertisement

Evolutionary Engineering of Yeast

  • Ceren Alkım
  • Burcu Turanlı-Yıldız
  • Z. Petek ÇakarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1152)

Abstract

Evolutionary engineering is an inverse metabolic engineering strategy which is based on increasing genetic diversity and screening large populations for desired phenotypes. This strategy is highly advantageous in certain situations over rational metabolic engineering approaches, since there is little or no requirement of detailed genetic background information for the trait of interest. Here, we describe the experimental methodology for selecting stress-resistant yeast strains via evolutionary engineering approach by either serial batch or chemostat cultivations.

Key words

Batch selection Chemostat selection Evolutionary engineering Inverse metabolic engineering 

Notes

Acknowledgements

We thank TÜBİTAK (project no: 109 T638, 105 T314), COST (Action no: CM0902), and ITU Research Funds (project no: 33237, 34200) for financial support of our evolutionary engineering research.

References

  1. 1.
    Patnaik R (2008) Engineering complex phenotypes in industrial strains. Biotechnol Prog 24(1):38–47CrossRefGoogle Scholar
  2. 2.
    Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675CrossRefGoogle Scholar
  3. 3.
    Bailey JE, Shurlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52(1):109–121CrossRefGoogle Scholar
  4. 4.
    Oud B, van Maris AJA, Daran JM, Pronk JT (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12(2):183–196CrossRefGoogle Scholar
  5. 5.
    Bro C, Nielsen J (2004) Impact of ‘ome’ analyses on inverse metabolic engineering. Metab Eng 6(3):204–211CrossRefGoogle Scholar
  6. 6.
    Warner JR, Patnaik R, Gill RT (2009) Genomics enabled approaches in strain engineering. Curr Opin Microbiol 12(3):223–230CrossRefGoogle Scholar
  7. 7.
    Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12(2): 171–182CrossRefGoogle Scholar
  8. 8.
    Çakar ZP, Alkim C, Turanli B, Tokman N, Akman S, Sarikaya M, Tamerler C, Benbadis L, Francois JM (2009) Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J Biotechnol 143(2):130–138CrossRefGoogle Scholar
  9. 9.
    Çakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5(6–7): 569–578CrossRefGoogle Scholar
  10. 10.
    Russek E, Colwell RR (1983) Computation of most probable numbers. Appl Environ Microbiol 45(5):1646–1650Google Scholar
  11. 11.
    Lindquist J (2012) A five-tube MPN table. http://www.jlindquist.net/generalmicro/ 102dil3a.html. Accessed on November 2012
  12. 12.
    Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169Google Scholar
  13. 13.
    Lawrence CW (1991) Classical mutagenesis techniques. Methods Enzymol 194:273–281CrossRefGoogle Scholar
  14. 14.
    Çakar ZP, Sauer U, Bailey J (1999) Metabolic engineering of yeast: the perils of auxotrophic hosts. Biotechnol Lett 21(7):611–616CrossRefGoogle Scholar
  15. 15.
    Gocke E, Buergin H, Mueller L, Pfister T (2009) Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate. Toxicol Lett 190(3): 254–265CrossRefGoogle Scholar
  16. 16.
    Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Ceren Alkım
    • 1
    • 2
  • Burcu Turanlı-Yıldız
    • 1
    • 2
  • Z. Petek Çakar
    • 1
    • 2
    Email author
  1. 1.Department of Molecular Biology and Genetics, Faculty of Science and LettersIstanbul Technical UniversityMaslakTurkey
  2. 2.Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical UniversityMaslakTurkey

Personalised recommendations