Skip to main content

Combining Engineering and Evolution to Create Novel Metabolic Mutualisms Between Species

  • Protocol
  • First Online:
Engineering and Analyzing Multicellular Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1151))

Abstract

Synthetic communities can be used as model systems for the molecular examination of species interactions. Manipulating synthetic communities to create novel beneficial interactions provides insight into the mechanisms of cooperation as well as the potential to improve the productivity of industrially relevant systems. Here, we present a general scheme for evolving a mutualism from a bacterial consortium in which one species consumes the by-products of another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. West SA, Griffin AS, Gardner A et al (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607

    Article  CAS  Google Scholar 

  2. Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse. Genes Dev 24:2603–2614

    Article  CAS  Google Scholar 

  3. Marx CJ (2009) Microbiology. Getting in touch with your friends. Science 324:1150–1151

    Article  CAS  Google Scholar 

  4. Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81:257–261

    Article  CAS  Google Scholar 

  5. Pettit RK (2009) Mixed fermentation for natural product drug discovery. Appl Microbiol Biotechnol 83:19–25

    Article  CAS  Google Scholar 

  6. Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93:1423–1435

    Article  CAS  Google Scholar 

  7. McInerney MJ, Struchtemeyer CG, Sieber J et al (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  Google Scholar 

  8. Smid EJ, Lacroix C (2013) Microbe-microbe interactions in mixed culture food fermentations. Curr Opin Biotechnol 24:148–154

    Article  CAS  Google Scholar 

  9. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:1–7

    CAS  Google Scholar 

  10. Brune KD, Bayer TS (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3:203

    Article  Google Scholar 

  11. Shou W, Ram S, Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882

    Article  CAS  Google Scholar 

  12. Hillesland KL, Stahl DA (2010) Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc Natl Acad Sci U S A 107:2124–2129

    Article  CAS  Google Scholar 

  13. Harcombe W (2010) Novel cooperation experimentally evolved between species. Evolution 64:2166–2172

    Google Scholar 

  14. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  Google Scholar 

  15. Umbarger HE (1969) Regulation of amino acid metabolism. Annu Rev Biochem 38:323–370

    Article  CAS  Google Scholar 

  16. Ishii K, Shiio I (1968) Regulation of purine ribonucleotide synthesis by end product inhibition. I. Effect of purine nucleotides on inosine-5′-phosphate dehydrogenase, xanthosine-5′-phosphate aminase and adenylosuccinate lyase of Bacillus subtilis. J Biochem 63:661–669

    CAS  Google Scholar 

  17. Nierlich DP, Magasanik B (1965) Regulation of purine ribonucleotide synthesis by end product inhibition. The effect of adenine and guanine ribonucleotides on the 5′-phosphoribosyl-pyrophosphate amidotransferase of Aerobacter aerogenes. J Biol Chem 240:358–365

    CAS  Google Scholar 

  18. Lawrence DA, Smith DA, Rowbury RJ (1968) Regulation of methionine synthesis in Salmonella typhimurium: mutants resistant to inhibition by analogues of methionine. Genetics 58:473–492

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Harcombe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chubiz, L., Douglas, S., Harcombe, W. (2014). Combining Engineering and Evolution to Create Novel Metabolic Mutualisms Between Species. In: Sun, L., Shou, W. (eds) Engineering and Analyzing Multicellular Systems. Methods in Molecular Biology, vol 1151. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0554-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0554-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0553-9

  • Online ISBN: 978-1-4939-0554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics