Skip to main content

Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using breseq

Part of the Methods in Molecular Biology book series (MIMB,volume 1151)


Next-generation DNA sequencing (NGS) can be used to reconstruct eco-evolutionary population dynamics and to identify the genetic basis of adaptation in laboratory evolution experiments. Here, we describe how to run the open-source breseq computational pipeline to identify and annotate genetic differences found in whole-genome and whole-population NGS data from haploid microbes where a high-quality reference genome is available. These methods can also be used to analyze mutants isolated in genetic screens and to detect unintended mutations that may occur during strain construction and genome editing.

Key words

  • Evolutionary genomics
  • Genome re-sequencing
  • Variant caller
  • Single-nucleotide variant
  • Structural variant
  • Insertion sequence
  • Mobile genetic element
  • Gene conversion

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0554-6_12
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0554-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    CAS  CrossRef  Google Scholar 

  2. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    CAS  CrossRef  Google Scholar 

  3. Trapnell C, Salzberg SL (2009) How to map billions of short reads onto genomes. Nat Biotechnol 27:455–457

    CAS  CrossRef  Google Scholar 

  4. DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    CAS  CrossRef  Google Scholar 

  5. Kim D, Salzberg SL (2011) TopHat-fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12:R72

    CAS  CrossRef  Google Scholar 

  6. Barrick JE, Yu DS, Yoon SH et al (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    CAS  CrossRef  Google Scholar 

  7. Barrick JE, Lenski RE (2009) Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harb Symp Quant Biol 74:119–129

    CAS  CrossRef  Google Scholar 

  8. Woods RJ, Barrick JE, Cooper TF et al (2011) Second-order selection for evolvability in a large Escherichia coli population. Science 331:1433–1436

    CAS  CrossRef  Google Scholar 

  9. Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518

    CAS  CrossRef  Google Scholar 

  10. Milne I, Stephen G, Bayer M et al (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202. doi:10.1093/bib/bbs012

    CAS  CrossRef  Google Scholar 

  11. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    CrossRef  Google Scholar 

  12. Jeong H, Barbe V, Lee CH et al (2009) Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol 394:644–652

    CAS  CrossRef  Google Scholar 

  13. Schneider D, Duperchy E, Coursange E et al (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156:477–488

    CAS  Google Scholar 

  14. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCF tools. Bioinformatics 27:2156–2158

    CAS  CrossRef  Google Scholar 

  15. Andrews S FastQC: a quality control tool for high throughput sequence data.

  16. Dodt M, Roehr J, Ahmed R, Dieterich C (2012) FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1:895–905

    CrossRef  Google Scholar 

  17. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    CAS  CrossRef  Google Scholar 

  18. Ribeiro FJ, Przybylski D, Yin S et al (2012) Finished bacterial genomes from shotgun sequence data. Genome Res 22:2270–2277

    CAS  CrossRef  Google Scholar 

  19. Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    CrossRef  Google Scholar 

Download references


D.E.D. was supported by a University of Texas at Austin CPRIT Cancer Research Traineeship. Development of breseq has been supported by an NSF Postdoctoral Research Fellowship in Biological Informatics (DBI-0630687) and by grants from the NSF BEACON Center for the Study of Evolution in Action (DBI-0939454), NIH (R00-GM087550), and CPRIT (RP130124) to J.E.B. Additional programmers and users who have provided valuable feedback and bug reports are thanked in the breseq documentation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jeffrey E. Barrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Deatherage, D.E., Barrick, J.E. (2014). Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using breseq . In: Sun, L., Shou, W. (eds) Engineering and Analyzing Multicellular Systems. Methods in Molecular Biology, vol 1151. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0553-9

  • Online ISBN: 978-1-4939-0554-6

  • eBook Packages: Springer Protocols