Skip to main content

The Past, Present, and Future of Chemical Risk Assessment

  • Protocol
  • First Online:
Book cover In Vitro Toxicology Systems

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Chemicals are essential components of our everyday life, from industrial chemicals used for manufacturing processes to the active principles of pharmaceuticals. As a consequence, whether it is accidental or deliberate, the population is now acutely and chronically exposed to chemicals, which has strengthened the need for improved methods of chemical risk assessment. Decades of experience with animal-based toxicity testing strategies have shown that their collective prediction of human risk is not satisfactory. Thus there is now a focus on developing human-based in vitro models with the goal to overcome this predictivity gap. New approaches which integrate human-derived cell cultures with sensitive mechanistic biomarkers of toxicity together with biokinetics look like promising alternatives to animal models. This chapter provides an overview of the past and present methods to develop new chemical entities and strategies employed to assess their toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  2. Leist M, Hartung T (2013) Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87(4): 563–567. doi:10.1007/s00204-013-1038-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1): 56–67. doi:10.1006/rtph.2000.1399

    Article  CAS  PubMed  Google Scholar 

  4. Blaauboer BJ, Boekelheide K, Clewell HJ, Daneshian M, Dingemans MM, Goldberg AM, Heneweer M, Jaworska J, Kramer NI, Leist M, Seibert H, Testai E, Vandebriel RJ, Yager JD, Zurlo J (2012) The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. ALTEX 29(4):411–425

    Article  PubMed  Google Scholar 

  5. Klimisch HJ (1993) Lung deposition, lung clearance and renal accumulation of inhaled cadmium chloride and cadmium sulphide in rats. Toxicology 84(1–3):103–124

    Article  CAS  PubMed  Google Scholar 

  6. IARC (1997) Monographs on the evaluation of carcinogenic risks to humans. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry, vol 58. IARC, Lyon

    Google Scholar 

  7. Wilmes A, Crean D, Aydin S, Pfaller W, Jennings P, Leonard MO (2011) Identification and dissection of the Nrf2 mediated oxidative stress pathway in human renal proximal tubule toxicity. Toxicol In Vitro 25(3):613–622. doi:10.1016/j.tiv.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  8. Hahn H, Huck CW, Rainer M, Najam-ul-Haq M, Bakry R, Abberger T, Jennings P, Pfaller W, Bonn GK (2007) Analysis of glutathione in supernatants and lysates of a human proximal tubular cell line from perfusion culture upon intoxication with cadmium chloride by HPLC and LC-ESI-MS. Anal Bioanal Chem 388(8):1763–1769. doi:10.1007/s00216-007-1401-1

    Article  CAS  PubMed  Google Scholar 

  9. Forti E, Bulgheroni A, Cetin Y, Hartung T, Jennings P, Pfaller W, Prieto P (2010) Characterisation of cadmium chloride induced molecular and functional alterations in airway epithelial cells. Cell Physiol Biochem 25(1):159–168. doi:10.1159/000272060

    Article  CAS  PubMed  Google Scholar 

  10. Campbell KC (2006) Bromate-induced ototoxicity. Toxicology 221(2–3):205–211. doi:10.1016/j.tox.2005.12.015

    Article  CAS  PubMed  Google Scholar 

  11. DeAngelo AB, George MH, Kilburn SR, Moore TM, Wolf DC (1998) Carcinogenicity of potassium bromate administered in the drinking water to male B6C3F1 mice and F344/N rats. Toxicol Pathol 26(5):587–594

    CAS  PubMed  Google Scholar 

  12. Kurokawa Y, Aoki S, Matsushima Y, Takamura N, Imazawa T, Hayashi Y (1986) Dose-response studies on the carcinogenicity of potassium bromate in F344 rats after long-term oral administration. J Natl Cancer Inst 77(4):977–982

    CAS  PubMed  Google Scholar 

  13. Cho DH, Hong JT, Chin K, Cho TS, Lee BM (1993) Organotropic formation and disappearance of 8-hydroxydeoxyguanosine in the kidney of Sprague-Dawley rats exposed to adriamycin and KBrO3. Cancer Lett 74(3):141–145

    Article  CAS  PubMed  Google Scholar 

  14. Fujie K, Shimazu H, Matsuda M, Sugiyama T (1988) Acute cytogenetic effects of potassium bromate on rat bone marrow cells in vivo. Mutat Res 206(4):455–458

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi M, Kishi M, Sofuni T, Ishidate M Jr (1988) Micronucleus tests in mice on 39 food additives and eight miscellaneous chemicals. Food Chem Toxicol 26(6):487–500

    Article  CAS  PubMed  Google Scholar 

  16. Limonciel A, Wilmes A, Aschauer L, Radford R, Bloch KM, McMorrow T, Pfaller W, van Delft JH, Slattery C, Ryan MP, Lock EA, Jennings P (2012) Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells. Arch Toxicol 86(11):1741–1751. doi:10.1007/s00204-012-0897-0

    Article  CAS  PubMed  Google Scholar 

  17. Boorman GA, McDonald MR, Imoto S, Persing R (1992) Renal lesions induced by Ochratoxin A exposure in the F344 rat. Toxicol Pathol 20(2):236–245

    Article  CAS  PubMed  Google Scholar 

  18. NTP (1989) Toxicology and carcinogenesis studies of Ochratoxin A (CAS No. 303-47-9) in F344/N Rats (gavage studies). National Toxicology Program Technical Report Series 358:1–142

    Google Scholar 

  19. Jennings P, Weiland C, Limonciel A, Bloch KM, Radford R, Aschauer L, McMorrow T, Wilmes A, Pfaller W, Ahr HJ, Slattery C, Lock EA, Ryan MP, Ellinger-Ziegelbauer H (2012) Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol 86(4):571–589. doi:10.1007/s00204-011-0780-4

    Article  CAS  PubMed  Google Scholar 

  20. JRC (2013) http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance. Accessed 12 July 2013

  21. Essack SY (2001) The development of beta-lactam antibiotics in response to the evolution of beta-lactamases. Pharm Res 18(10):1391–1399

    Article  CAS  PubMed  Google Scholar 

  22. Kahan BD (2011) Fifty years in the vineyard of transplantation: looking back. Transplant Proc 43(8):2853–2859. doi:10.1016/j.transproceed. 2011.08.058

    Article  CAS  PubMed  Google Scholar 

  23. Lombardino JG, Lowe JA 3rd (2004) The role of the medicinal chemist in drug discovery—then and now. Nat Rev Drug Discov 3(10):853–862. doi:10.1038/nrd1523

    Article  CAS  PubMed  Google Scholar 

  24. Ballentine C (1981) Taste of raspberries, taste of death. The 1937 Elixir Sulfanilamide Incident. FDA Consumer Magazine. FDA

    Google Scholar 

  25. Von Oettingen WF, Jirouch EA (1931) The pharmacology of ethylene glycol and some of its derivatives in relation to their chemical constitution and physical chemical properties. J Pharmacol Exp Ther 42:355–372

    Google Scholar 

  26. Haag HB, Ambrose AM (1937) Studies on the physiological effect of diethylene glycol. II Toxicity and fate. J Pharmacol Exp Ther 59: 93–100

    CAS  Google Scholar 

  27. Nicholls AG (1937) The elixir sulfanilamide-massengill. Can Med Assoc J 37(6):590

    Google Scholar 

  28. FDA (2012) FDA history—part II. The 1938 food, drug, and cosmetic act. http://www.fda.gov/AboutFDA/WhatWeDo/History/Origin/ucm054826.htm. Accessed 17 June 2013

  29. Emanuel M, Rawlins M, Duff G, Breckenridge A (2012) Thalidomide and its sequelae. Lancet 380(9844):781–783. doi:10.1016/S0140-6736(12)60468-1

    Article  PubMed  Google Scholar 

  30. McBride WG (1961) Thalidomide and congenital abnormalities. Lancet 278(7216):1358. doi:10.1016/S0140-6736(61)90927-8

    Article  Google Scholar 

  31. Syme MR, Paxton JW, Keelan JA (2004) Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 43(8):487–514

    Article  CAS  PubMed  Google Scholar 

  32. Kim JH, Scialli AR (2011) Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci 122(1):1–6. doi:10.1093/toxsci/kfr088

    Article  CAS  PubMed  Google Scholar 

  33. Rägo L, Santoso B (2008) Drug regulation: history, present and future. In: van Boxtel CJ, Santoso B, Edwards IR (eds) WHO drug benefits and risks: international textbook of clinical pharmacology. IOS Press and Uppsala Monitoring Centre, Amsterdam

    Google Scholar 

  34. ECVAM (2013) Acute toxicity. http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance/systemic-toxicity/acute-toxicity. Accessed 30 July 2013

  35. Trevan JW (1927) The error of determination of toxicity. Proc R Soc Lond B 101:483–514

    Article  CAS  Google Scholar 

  36. Gribaldo L, Gennari A, Blackburn K, Clemedson C, Deguercy A, Meneguz A, Pfaller W, Ruhdel I (2005) Acute toxicity. Altern Lab Anim 33(Suppl 1):27–34

    CAS  PubMed  Google Scholar 

  37. Schlede E, Genschow E, Spielmann H, Stropp G, Kayser D (2005) Oral acute toxic class method: a successful alternative to the oral LD50 test. Regul Toxicol Pharmacol 42(1): 15–23. doi:10.1016/j.yrtph.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  38. Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, Chu I, Goddard M, Segal L, Springer JA, Myers RC (1995) Comparison of the up-and-down, conventional Ld(50), and fixed-dose acute toxicity procedures. Food Chem Toxicol 33(3):223–231. doi:10.1016/0278-6915(94)00136-C

    Article  CAS  PubMed  Google Scholar 

  39. Bruce RD (1985) An up-and-down procedure for acute toxicity testing. Fundam Appl Toxicol 5(1):151–157

    Article  CAS  PubMed  Google Scholar 

  40. Robinson S, Delongeas JL, Donald E, Dreher D, Festag M, Kervyn S, Lampo A, Nahas K, Nogues V, Ockert D, Quinn K, Old S, Pickersgill N, Somers K, Stark C, Stei P, Waterson L, Chapman K (2008) A European pharmaceutical company initiative challenging the regulatory requirement for acute toxicity studies in pharmaceutical drug development. Regul Toxicol Pharmacol 50(3):345–352. doi:10.1016/j.yrtph.2007.11.009

    Article  PubMed  Google Scholar 

  41. EMA (2010) Questions and answers on the withdrawal of the ‘Note for guidance on single dose toxicity’ EMA/CHMP/SWP/81714/2010

    Google Scholar 

  42. Prieto P, Baird AW, Blaauboer BJ, Castell Ripoll JV, Corvi R, Dekant W, Dietl P, Gennari A, Gribaldo L, Griffin JL, Hartung T, Heindel JJ, Hoet P, Jennings P, Marocchio L, Noraberg J, Pazos P, Westmoreland C, Wolf A, Wright J, Pfaller W (2006) The assessment of repeated dose toxicity in vitro: a proposed approach. The report and recommendations of ECVAM workshop 56. Altern Lab Anim 34(3):315–341

    CAS  PubMed  Google Scholar 

  43. Renwick AG, Lazarus NR (1998) Human variability and noncancer risk assessment—an analysis of the default uncertainty factor. Regul Toxicol Pharmacol 27(1 Pt 1):3–20

    Article  CAS  Google Scholar 

  44. Hengstler JG, Marchan R, Leist M (2012) Highlight report: towards the replacement of in vivo repeated dose systemic toxicity testing. Arch Toxicol 86(1):13–15. doi:10.1007/s00204-011-0798-7

    Article  CAS  PubMed  Google Scholar 

  45. EMA (2010) Repeated dose toxicity. CPMP/SWP/1042/99 Rev. 1 Corr

    Google Scholar 

  46. Knight A (2008) Systematic reviews of animal experiments demonstrate poor contributions toward human healthcare. Rev Recent Clin Trials 3(2):89–96

    Article  PubMed  Google Scholar 

  47. Preziosi P (2004) Science, pharmacoeconomics and ethics in drug R&D: a sustainable future scenario? Nat Rev Drug Discov 3(6):521–526. doi:10.1038/nrd1418

    Article  CAS  PubMed  Google Scholar 

  48. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214. doi:10.1038/nrd3078

    CAS  PubMed  Google Scholar 

  49. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715. doi:10.1038/nrd1470

    Article  CAS  PubMed  Google Scholar 

  50. Balls M (2004) Are animal tests inherently valid? Altern Lab Anim 32(Suppl 1):755–758

    CAS  PubMed  Google Scholar 

  51. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10): 1018–1028. doi:10.1056/NEJMoa063842

    Article  CAS  PubMed  Google Scholar 

  52. Stebbings R, Poole S, Thorpe R (2009) Safety of biologics, lessons learnt from TGN1412. Curr Opin Biotechnol 20(6):673–677. doi:10.1016/j.copbio.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  53. van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G (2010) Optimization of chemically defined cell culture media—replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24(4):1053–1063. doi:10.1016/j.tiv.2010.03.016

    Article  PubMed  Google Scholar 

  54. EC (2013) Full EU ban on animal testing for cosmetics enters into force. http://europa.eu/rapid/press-release_IP-13-210_en.htm

  55. Limonciel A, Aschauer L, Wilmes A, Prajczer S, Leonard MO, Pfaller W, Jennings P (2011) Lactate is an ideal non-invasive marker for evaluating temporal alterations in cell stress and toxicity in repeat dose testing regimes. Toxicol In Vitro 25(8):1855–1862. doi:10.1016/j.tiv.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  56. Wilmes A, Limonciel A, Aschauer L, Moenks K, Bielow C, Leonard MO, Hamon J, Carpi D, Ruzek S, Handler A, Schmal O, Herrgen K, Bellwon P, Burek C, Truisi GL, Hewitt P, Di Consiglio E, Testai E, Blaauboer BJ, Guillou C, Huber CG, Lukas A, Pfaller W, Mueller SO, Bois FY, Dekant W, Jennings P (2013) Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 79:180–194. doi:10.1016/j.jprot.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  57. Hartung T, van Vliet E, Jaworska J, Bonilla L, Skinner N, Thomas R (2012) Systems toxicology. ALTEX 29(2):119–128

    Article  PubMed  Google Scholar 

  58. Yamada F, Sumida K, Uehara T, Morikawa Y, Yamada H, Urushidani T, Ohno Y (2012) Toxicogenomics discrimination of potential hepatocarcinogenicity of non-genotoxic compounds in rat liver. J Appl Toxicol. doi:10.1002/jat.2790

    Google Scholar 

  59. Doktorova TY, Yildirimman R, Vinken M, Vilardell M, Vanhaecke T, Gmuender H, Bort R, Brolen G, Holmgren G, Li R, Chesne C, van Delft J, Kleinjans J, Castell J, Bjorquist P, Herwig R, Rogiers V (2013) Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models. Carcinogenesis 34:1393. doi:10.1093/carcin/bgt054

    Article  CAS  PubMed  Google Scholar 

  60. Jennen D, Ruiz-Aracama A, Magkoufopoulou C, Peijnenburg A, Lommen A, van Delft J, Kleinjans J (2011) Integrating transcriptomics and metabonomics to unravel modes-of-action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in HepG2 cells. BMC Syst Biol 5:139. doi:10.1186/1752-0509-5-139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Jetten MJ, Gaj S, Ruiz-Aracama A, de Kok TM, van Delft JH, Lommen A, van Someren EP, Jennen DG, Claessen SM, Peijnenburg AA, Stierum RH, Kleinjans JC (2012) Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans. Toxicol Appl Pharmacol 259(3):320–328. doi:10.1016/j.taap.2012.01.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Limonciel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Limonciel, A. (2014). The Past, Present, and Future of Chemical Risk Assessment. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics