Assessing Pseudomonas Virulence with Nonmammalian Host: Zebrafish

  • María A. LlamasEmail author
  • Astrid M. van der Sar
Part of the Methods in Molecular Biology book series (MIMB, volume 1149)


In the last years, the zebrafish (Danio rerio) has become an important vertebrate animal model to study host–pathogen interactions, especially in its embryonic stage. The presence of a fully developed innate immune system in the first days of embryogenesis, the facility of obtaining and manipulating large numbers of embryos, the optical transparency of the embryos that allow the direct visualization of bacterial infections, a wide range of genetic tools, and extensive mutant resources and collections of transgenic reporter lines are important advantages of the zebrafish-embryo model. Pseudomonas aeruginosa is able to lethally infect zebrafish embryos when the amount of cells injected exceeds the phagocytic capacity of the embryo. Different studies have proved the suitability of zebrafish embryos as a model to analyze P. aeruginosa infection. Here we describe the detailed protocols to establish a P. aeruginosa infection in zebrafish embryos and to image the interaction of the bacterium with this host with fluorescent microscopy.

Key words

Danio rerio (zebrafish) Embryo model Pseudomonas aeruginosa Bacterial infection Fluorescence imaging Microinjection 



This work was supported by an EU Marie Curie CIG grant (3038130) and a Ramon&Cajal grant (RYC-2011-08874) from the Spanish Ministry of Economy. In addition support was obtained from the Smart Mix Programme of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science.


  1. 1.
    Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 94:14614–14619PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ewbank JJ (2002) Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microbes Infect 4:247–256PubMedCrossRefGoogle Scholar
  3. 3.
    Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96:715–720PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S (2007) Environmental predators as models for bacterial pathogenesis. Environ Microbiol 9:563–575PubMedCrossRefGoogle Scholar
  5. 5.
    van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol 12:451–457PubMedCrossRefGoogle Scholar
  6. 6.
    Meijer AH, Spaink HP (2011) Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 12:1000–1017PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Phelps HA, Neely MN (2005) Evolution of the zebrafish model: from development to immunity and infectious disease. Zebrafish 2:87–103PubMedCrossRefGoogle Scholar
  8. 8.
    Kanther M, Rawls JF (2010) Host-microbe interactions in the developing zebrafish. Curr Opin Immunol 22:10–19PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA et al (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330PubMedGoogle Scholar
  10. 10.
    Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7:454–459PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH et al (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bowman TV, Zon LI (2010) Swimming into the future of drug discovery: in vivo chemical screens in zebrafish. ACS Chem Biol 5:159–161PubMedCrossRefGoogle Scholar
  13. 13.
    Cui C, Benard EL, Kanwal Z, Stockhammer OW, van der Vaart M et al (2011) Infectious disease modeling and innate immune function in zebrafish embryos. Methods Cell Biol 105:273–308PubMedCrossRefGoogle Scholar
  14. 14.
    Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP et al (2012) Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis ExpGoogle Scholar
  15. 15.
    Carvalho R, de Sonneville J, Stockhammer OW, Savage ND, Veneman WJ et al (2011) A high-throughput screen for tuberculosis progression. PLoS One 6:e16779PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Alibaud L, Rombouts Y, Trivelli X, Burguiere A, Cirillo SL et al (2011) A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Mol Microbiol 80:919–934PubMedCrossRefGoogle Scholar
  17. 17.
    Brannon MK, Davis JM, Mathias JR, Hall CJ, Emerson JC et al (2009) Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cell Microbiol 11:755–768PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Clatworthy AE, Lee JS, Leibman M, Kostun Z, Davidson AJ et al (2009) Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect Immun 77:1293–1303PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Llamas MA, van der Sar A, Chu BC, Sparrius M, Vogel HJ et al (2009) A novel extracytoplasmic function (ECF) sigma factor regulates virulence in Pseudomonas aeruginosa. PLoS Pathog 5:e1000572PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    van der Sar AM, Musters RJ, van Eeden FJ, Appelmelk BJ, Vandenbroucke-Grauls CM et al (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5:601–611PubMedCrossRefGoogle Scholar
  21. 21.
    Cosma CL, Swaim LE, Volkman H, Ramakrishnan L, Davis JM (2006) Zebrafish and frog models of Mycobacterium marinum infection. Curr Protoc Microbiol Chapter 10:10B.12.11–10B.12.33Google Scholar
  22. 22.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  23. 23.
    Singer JT, Phennicie RT, Sullivan MJ, Porter LA, Shaffer VJ et al (2010) Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system. Appl Environ Microbiol 76:3467–3474PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, EugeneGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín-CSICGranadaSpain
  2. 2.Department of Medical Microbiology and Infection ControlVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations