Skip to main content

Transposon Mutagenesis

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Transposon-based mutagenesis of bacterial genomes is a powerful method to identify genetic elements that control specific phenotypes. The most frequently used transposon tools in Pseudomonas aeruginosa are based either on Himar1 mariner or Tn5 transposases, both of which have been used to generate nonredundant mutant libraries in P. aeruginosa. Here we present a detailed protocol for using Himar1 mariner-based transposon mutagenesis to create mutant libraries in P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruvkun GB, Ausubel FM (1982) A general method for site-directed mutagenesis in prokaryotes. Nature 289:85–88

    Article  Google Scholar 

  2. Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N (1984) New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369–379

    Article  CAS  Google Scholar 

  3. Newland JW, Green BA, Holmes RK (1984) Transposon-mediated mutagenesis and recombination in Vibrio cholerae. Infect Immun 45: 428–432

    Article  CAS  Google Scholar 

  4. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55:368–380

    Article  CAS  Google Scholar 

  5. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S et al (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:14339–14344

    Article  CAS  Google Scholar 

  6. Wong SM, Mekalanos JJ (2000) Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:10191–10196

    Article  CAS  Google Scholar 

  7. Rubin EJ, Akerley B, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96:1645–1650

    Article  CAS  Google Scholar 

  8. Lampe DJ, Akerley BJ, Rubin EJ, Mekalanos JJ, Robertson HM (1999) Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci U S A 96:11428–11433

    Article  CAS  Google Scholar 

  9. Held K, Ramage E, Jacob M, Gallaghe L, Manoil C (2012) Sequence-verified two-allele transposon mutant library for Pseudomonas aeruginosa PAO1. J Bacteriol 194:6387–9389

    Article  CAS  Google Scholar 

  10. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G et al (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838

    Article  CAS  Google Scholar 

  11. Kolter R, Helinski DR (1978) Construction of plasmid R6K derivatives in vitro: characterization of the R6K replication region. Plasmid 1:571–580

    Article  CAS  Google Scholar 

  12. D’Argenio DA, Calfee MW, Rainey PB, Pesci EC (2002) Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184:6481–6489

    Article  Google Scholar 

  13. D’Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Deziel E, Smith EE et al (2007) Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64:512–533

    Article  Google Scholar 

  14. Chun K, Edenberg HJ, Kelley MR, Goebl MG (1997) Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast 13:233–240

    Article  CAS  Google Scholar 

  15. O’Toole GA, Kolterm R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  Google Scholar 

  16. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745–754

    Article  CAS  Google Scholar 

  17. Das S, Noe JC, Paik S, Kitten T (2005) An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J Microbiol Methods 63:89–94

    Article  CAS  Google Scholar 

  18. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3:1452–1456

    Article  CAS  Google Scholar 

  19. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  CAS  Google Scholar 

  20. Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583

    Article  CAS  Google Scholar 

  21. Hoang TT, Kutchma AJ, Becher A, Schweizer HP (2000) Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:59–72

    Article  CAS  Google Scholar 

  22. Choi KH, Schweizer HP (2006) Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161

    Article  CAS  Google Scholar 

  23. Castang S, Dove SL (2012) Basis for the essentiality of H-NS family members in Pseudomonas aeruginosa. J Bacteriol 194:5101–5109

    Article  CAS  Google Scholar 

  24. Rahme LG, Steven EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902

    Article  CAS  Google Scholar 

  25. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman R, D’Argenio DA et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492

    Article  CAS  Google Scholar 

  26. Hoang TT, Karkhoff-Schweiz RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77–86

    Article  CAS  Google Scholar 

  27. Damron FH, McKenney ES, Schweizer HP, Goldberg JB (2013) Construction of a broad-host range Tn7-based vector for single copy PBAD controlled gene expression in gram-negative bacteria. Appl Environ Microbiol 79:718–721

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemantha D. Kulasekara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kulasekara, H.D. (2014). Transposon Mutagenesis. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_39

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics