Monitoring Lectin Interactions with Carbohydrates

Part of the Methods in Molecular Biology book series (MIMB, volume 1149)


Protein–carbohydrate interactions are often involved in the first step of infection and Pseudomonas aeruginosa produces several proteins that are able to bind specifically to glycan epitopes present on host epithelia. The experimental approaches for studying protein–carbohydrate interaction have been inspired, with some adaptations, from those commonly used for protein–protein or protein–ligand interactions. A range of methods are described herein for detecting lectin activity, screening for monosaccharide or oligosaccharide specificity, determining the affinity of binding together with thermodynamics and kinetics parameters, and producing crystal of lectin–carbohydrate complexes for further structural studies.

Key words

Lectins Adhesins Glycans Interactions 



The authors acknowledge funding from ANR grants PA-Antiadh (ANR-09-JCJC-0047) and Glycoasterix (ANR-08-PCVI-0028). Support from GDR Pseudomonas and Association Vaincre la Mucoviscidose is also acknowledged.


  1. 1.
    Gabius HJ, Siebert HC, Andre S, Jimenez-Barbero J, Rudiger H (2004) Chemical biology of the sugar code. Chem Bio Chem 5: 740–764PubMedCrossRefGoogle Scholar
  2. 2.
    Imberty A, Varrot A (2008) Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol 18:567–576PubMedCrossRefGoogle Scholar
  3. 3.
    Karlsson KA (2001) Pathogen-host protein–carbohydrate interactions as the basis of important infections. Adv Exp Med Biol 491: 431–443PubMedCrossRefGoogle Scholar
  4. 4.
    Sharon N (1996) Carbohydrate–lectin interactions in infectious disease. Adv Exp Med Biol 408:1–8PubMedCrossRefGoogle Scholar
  5. 5.
    Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9:548–553PubMedCrossRefGoogle Scholar
  6. 6.
    De Greve H, Wyns L, Bouckaert J (2007) Combining sites of bacterial fimbriae. Curr Opin Struct Biol 17:506–512PubMedCrossRefGoogle Scholar
  7. 7.
    Blumenschein TM, Friedrich N, Childs RA, Saouros S, Carpenter EP, Campanero-Rhodes MA, Simpson P, Chai W, Koutroukides T, Blackman MJ, Feizi T, Soldati-Favre D, Matthews S (2007) Atomic resolution insight into host cell recognition by Toxoplasma gondii. EMBO J 26:2808–2820PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Merritt EA, Hol WGJ (1995) AB5 toxins. Curr Opin Struct Biol 5:165–171PubMedCrossRefGoogle Scholar
  9. 9.
    Gilboa-Garber N (1982) Pseudomonas aeruginosa lectins. Meth Enzymol 83:378–385PubMedCrossRefGoogle Scholar
  10. 10.
    Imberty A, Wimmerova M, Mitchell EP, Gilboa-Garber N (2004) Structures of the lectins from Pseudomonas aeruginosa: insights into molecular basis for host glycan recognition. Microb Infect 6:222–229CrossRefGoogle Scholar
  11. 11.
    Giraud C, Bernard CS, Ruer S, de Bentzmann S (2010) Biological “glue” and “Velcro”: molecular tools for adhesion and biofilm formation in the hairy and gluey bug Pseudomonas aeruginosa. Environ Microbiol Rep 2:343–358PubMedCrossRefGoogle Scholar
  12. 12.
    Hazes B, Sastry PA, Hayakawa K, Read RJ, Irvin RT (2000) Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299:1005–1017PubMedCrossRefGoogle Scholar
  13. 13.
    Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R (1998) The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66: 1000–1007PubMedCentralPubMedGoogle Scholar
  14. 14.
    Scharfman A, Arora SK, Delmotte P, Van Brussel E, Mazurier J, Ramphal R, Roussel P (2001) Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa. Infect Immun 69: 5243–5248PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8:1095–1104PubMedCrossRefGoogle Scholar
  16. 16.
    Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger K-E (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323PubMedCrossRefGoogle Scholar
  17. 17.
    Chemani C, Imberty A, de Bentzman S, Pierre P, Wimmerová M, Guery BP, Faure K (2009) Role of LecA and LecB lectins in Pseudomonas aeruginosa induced lung injury and effect of carbohydrates ligands. Infect Immun 77: 2065–2075PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Cioci G, Mitchell EP, Gautier C, Wimmerova M, Sudakevitz D, Pérez S, Gilboa-Garber N, Imberty A (2003) Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555: 297–301PubMedCrossRefGoogle Scholar
  19. 19.
    Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Pérez S, Wu AM, Gilboa-Garber N, Imberty A (2002) Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9:918–921PubMedCrossRefGoogle Scholar
  20. 20.
    Sabin C, Mitchell EP, Pokorná M, Gautier C, Utille J-P, Wimmerová M, Imberty A (2006) Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: Thermodynamics data correlated with X-ray structures. FEBS Lett 580:982–987PubMedCrossRefGoogle Scholar
  21. 21.
    Blanchard B, Nurisso A, Hollville E, Tétaud C, Wiels J, Pokorná M, Wimmerová M, Varrot A, Imberty A (2008) Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I (PA-IL). J Mol Biol 383:837–853PubMedCrossRefGoogle Scholar
  22. 22.
    Nurisso A, Blanchard B, Audfray A, Rydner L, Oscarson S, Varrot A, Imberty A (2010) Role of water molecules in structure and energetics of Pseudomonas aeruginosa PA-IL lectin interacting with disaccharides. J Biol Chem 285: 20316–20327PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Perret S, Sabin C, Dumon C, Pokorná M, Gautier C, Galanina O, Ilia S, Bovin N, Nicaise M, Desmadril M, Gilboa-Garber N, Wimmerova M, Mitchell EP, Imberty A (2005) Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem J 389:325–332PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Cecioni S, Lalor R, Blanchard B, Praly JP, Imberty A, Matthews SE, Vidal S (2009) Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugate. Chem Eur J 15: 13232–13240PubMedCrossRefGoogle Scholar
  25. 25.
    Imberty A, Chabre YM, Roy R (2008) Glycomimetics and glycodendrimers as high affinity microbial antiadhesins. Chem Eur J 14:7490–7499PubMedCrossRefGoogle Scholar
  26. 26.
    Kadam RU, Bergmann M, Hurley M, Garg D, Cacciarini M, Swiderska MA, Nativi C, Sattler M, Smyth AR, Williams P, Cámara M, Stocker A, Darbre T, Reymond J-L (2011) A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew Chem Int Ed Engl 50:10631–10635PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Marotte K, Preville C, Sabin C, Moume-Pymbock M, Imberty A, Roy R (2007) Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. Org Biomol Chem 5:2953–2961PubMedCrossRefGoogle Scholar
  28. 28.
    Marotte K, Sabin C, Preville C, Moume-Pymbock M, Wimmerova M, Mitchell EP, Imberty A, Roy R (2007) X-ray structures and thermodynamics of the interaction of PA-IIL from Pseudomonas aeruginosa with disaccharide derivatives. ChemMedChem 2: 1328–1338PubMedCrossRefGoogle Scholar
  29. 29.
    Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179: 131–137PubMedCrossRefGoogle Scholar
  30. 30.
    Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM)UMR7255 CNRS-Aix Marseille Université, Institut de Microbiologie de la MéditerranéeMarseille Cédex 20France
  2. 2.Centre de Recherches sur les Macromolécules VégétalesUPR5301 CNRS, Université Joseph Fourier and ICMGGrenoble Cédex 09France

Personalised recommendations