Skip to main content

Monitoring Lectin Interactions with Carbohydrates

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Protein–carbohydrate interactions are often involved in the first step of infection and Pseudomonas aeruginosa produces several proteins that are able to bind specifically to glycan epitopes present on host epithelia. The experimental approaches for studying protein–carbohydrate interaction have been inspired, with some adaptations, from those commonly used for protein–protein or protein–ligand interactions. A range of methods are described herein for detecting lectin activity, screening for monosaccharide or oligosaccharide specificity, determining the affinity of binding together with thermodynamics and kinetics parameters, and producing crystal of lectin–carbohydrate complexes for further structural studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabius HJ, Siebert HC, Andre S, Jimenez-Barbero J, Rudiger H (2004) Chemical biology of the sugar code. Chem Bio Chem 5: 740–764

    Article  CAS  Google Scholar 

  2. Imberty A, Varrot A (2008) Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol 18:567–576

    Article  CAS  Google Scholar 

  3. Karlsson KA (2001) Pathogen-host protein–carbohydrate interactions as the basis of important infections. Adv Exp Med Biol 491: 431–443

    Article  CAS  Google Scholar 

  4. Sharon N (1996) Carbohydrate–lectin interactions in infectious disease. Adv Exp Med Biol 408:1–8

    Article  CAS  Google Scholar 

  5. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9:548–553

    Article  CAS  Google Scholar 

  6. De Greve H, Wyns L, Bouckaert J (2007) Combining sites of bacterial fimbriae. Curr Opin Struct Biol 17:506–512

    Article  Google Scholar 

  7. Blumenschein TM, Friedrich N, Childs RA, Saouros S, Carpenter EP, Campanero-Rhodes MA, Simpson P, Chai W, Koutroukides T, Blackman MJ, Feizi T, Soldati-Favre D, Matthews S (2007) Atomic resolution insight into host cell recognition by Toxoplasma gondii. EMBO J 26:2808–2820

    Article  CAS  Google Scholar 

  8. Merritt EA, Hol WGJ (1995) AB5 toxins. Curr Opin Struct Biol 5:165–171

    Article  CAS  Google Scholar 

  9. Gilboa-Garber N (1982) Pseudomonas aeruginosa lectins. Meth Enzymol 83:378–385

    Article  CAS  Google Scholar 

  10. Imberty A, Wimmerova M, Mitchell EP, Gilboa-Garber N (2004) Structures of the lectins from Pseudomonas aeruginosa: insights into molecular basis for host glycan recognition. Microb Infect 6:222–229

    Article  Google Scholar 

  11. Giraud C, Bernard CS, Ruer S, de Bentzmann S (2010) Biological “glue” and “Velcro”: molecular tools for adhesion and biofilm formation in the hairy and gluey bug Pseudomonas aeruginosa. Environ Microbiol Rep 2:343–358

    Article  CAS  Google Scholar 

  12. Hazes B, Sastry PA, Hayakawa K, Read RJ, Irvin RT (2000) Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299:1005–1017

    Article  CAS  Google Scholar 

  13. Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R (1998) The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66: 1000–1007

    Article  CAS  Google Scholar 

  14. Scharfman A, Arora SK, Delmotte P, Van Brussel E, Mazurier J, Ramphal R, Roussel P (2001) Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa. Infect Immun 69: 5243–5248

    Article  CAS  Google Scholar 

  15. Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8:1095–1104

    Article  CAS  Google Scholar 

  16. Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger K-E (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323

    Article  CAS  Google Scholar 

  17. Chemani C, Imberty A, de Bentzman S, Pierre P, Wimmerová M, Guery BP, Faure K (2009) Role of LecA and LecB lectins in Pseudomonas aeruginosa induced lung injury and effect of carbohydrates ligands. Infect Immun 77: 2065–2075

    Article  CAS  Google Scholar 

  18. Cioci G, Mitchell EP, Gautier C, Wimmerova M, Sudakevitz D, Pérez S, Gilboa-Garber N, Imberty A (2003) Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555: 297–301

    Article  CAS  Google Scholar 

  19. Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Pérez S, Wu AM, Gilboa-Garber N, Imberty A (2002) Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9:918–921

    Article  CAS  Google Scholar 

  20. Sabin C, Mitchell EP, Pokorná M, Gautier C, Utille J-P, Wimmerová M, Imberty A (2006) Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: Thermodynamics data correlated with X-ray structures. FEBS Lett 580:982–987

    Article  CAS  Google Scholar 

  21. Blanchard B, Nurisso A, Hollville E, Tétaud C, Wiels J, Pokorná M, Wimmerová M, Varrot A, Imberty A (2008) Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I (PA-IL). J Mol Biol 383:837–853

    Article  CAS  Google Scholar 

  22. Nurisso A, Blanchard B, Audfray A, Rydner L, Oscarson S, Varrot A, Imberty A (2010) Role of water molecules in structure and energetics of Pseudomonas aeruginosa PA-IL lectin interacting with disaccharides. J Biol Chem 285: 20316–20327

    Article  CAS  Google Scholar 

  23. Perret S, Sabin C, Dumon C, Pokorná M, Gautier C, Galanina O, Ilia S, Bovin N, Nicaise M, Desmadril M, Gilboa-Garber N, Wimmerova M, Mitchell EP, Imberty A (2005) Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem J 389:325–332

    Article  CAS  Google Scholar 

  24. Cecioni S, Lalor R, Blanchard B, Praly JP, Imberty A, Matthews SE, Vidal S (2009) Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugate. Chem Eur J 15: 13232–13240

    Article  CAS  Google Scholar 

  25. Imberty A, Chabre YM, Roy R (2008) Glycomimetics and glycodendrimers as high affinity microbial antiadhesins. Chem Eur J 14:7490–7499

    Article  CAS  Google Scholar 

  26. Kadam RU, Bergmann M, Hurley M, Garg D, Cacciarini M, Swiderska MA, Nativi C, Sattler M, Smyth AR, Williams P, Cámara M, Stocker A, Darbre T, Reymond J-L (2011) A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew Chem Int Ed Engl 50:10631–10635

    Article  CAS  Google Scholar 

  27. Marotte K, Preville C, Sabin C, Moume-Pymbock M, Imberty A, Roy R (2007) Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. Org Biomol Chem 5:2953–2961

    Article  CAS  Google Scholar 

  28. Marotte K, Sabin C, Preville C, Moume-Pymbock M, Wimmerova M, Mitchell EP, Imberty A, Roy R (2007) X-ray structures and thermodynamics of the interaction of PA-IIL from Pseudomonas aeruginosa with disaccharide derivatives. ChemMedChem 2: 1328–1338

    Article  CAS  Google Scholar 

  29. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179: 131–137

    Article  CAS  Google Scholar 

  30. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from ANR grants PA-Antiadh (ANR-09-JCJC-0047) and Glycoasterix (ANR-08-PCVI-0028). Support from GDR Pseudomonas and Association Vaincre la Mucoviscidose is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sophie de Bentzmann or Anne Imberty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Bentzmann, S., Varrot, A., Imberty, A. (2014). Monitoring Lectin Interactions with Carbohydrates. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics