Abstract
Pseudomonas aeruginosa is a versatile human opportunistic pathogen that produces and secretes an arsenal of enzymes, proteins and small molecules many of which serve as virulence factors. Notably, about 40 % of P. aeruginosa genes code for proteins of unknown function, among them more than 80 encoding putative, but still unknown lipolytic enzymes. This group of hydrolases (EC 3.1.1) is known already for decades, but only recently, several of these enzymes have attracted attention as potential virulence factors. Reliable and reproducible enzymatic activity assays are crucial to determine their physiological function and particularly assess their contribution to pathogenicity. As a consequence of the unique biochemical properties of lipids resulting in the formation of micellar structures in water, the reproducible preparation of substrate emulsions is strongly dependent on the method used. Furthermore, the physicochemical properties of the respective substrate emulsion may drastically affect the activities of the tested lipolytic enzymes. Here, we describe common methods for the activity determination of lipase, esterase, phospholipase, and lysophospholipase. These methods cover lipolytic activity assays carried out in vitro, with cell extracts or separated subcellular compartments and with purified enzymes. We have attempted to describe standardized protocols, allowing the determination and comparison of enzymatic activities of lipolytic enzymes from different sources. These methods should also encourage the Pseudomonas community to address the wealth of still unexplored lipolytic enzymes encoded and produced by P. aeruginosa.
Key words
- Pseudomonas aeruginosa
- Lipase
- Esterase
- Phospholipase A
- Lysophospholipase
- Agar-plate assay
- Colorimetric assay
- Fluorometric assay
- Titrimetric assay
- Lipase fingerprinting
- Enantioselectivity assay
This is a preview of subscription content, access via your institution.
Buying options



References
Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38
Ali YB, Verger R, Abousalham A (2012) Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. Methods Mol Biol 861:31–51
Ferrato F, Carriere F, Sarda L, Verger R (1997) A critical reevaluation of the phenomenon of interfacial activation. Methods Enzymol 286:327–347
Sarda L, Desnuelle P (1958) Actions of pancreatic lipase on esters in emulsions. Biochim Biophys Acta 30:513–521
Chahinian H, Nini L, Boitard E, Dubes JP, Comeau LC et al (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653–662
Chahinian H, Sarda L (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149–1161
Fojan P, Jonson PH, Petersen MT, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041
Lo YC, Lin SC, Shaw JF, Liaw YC (2003) Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 330:539–551
Lescic Asler I, Ivic N, Kovacic F, Schell S, Knorr J et al (2010) Probing enzyme promiscuity of SGNH hydrolases. Chembiochem 11:2158–2167
Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M et al (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268
Kaewprapan K, Wongkongkatep J, Panbangred W, Phinyocheep P, Marie E et al (2011) Lipase-catalyzed synthesis of hydrophobically modified dextrans: activity and regioselectivity of lipase from Candida rugosa. J Biosci Bioeng 112:124–129
Zaidan UH, Abdul Rahman MB, Othman SS, Basri M, Abdulmalek E et al (2011) Kinetic behaviour of free lipase and mica-based immobilized lipase catalyzing the synthesis of sugar esters. Biosci Biotechnol Biochem 75:1446–1450
Bornscheuer UT, Kazlauskas RJ (2006) Phospholipases: sections 7.1–7.2. In: Bornscheuer UT, Kazlauskas RJ (eds) Hydrolases in organic synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 211–214
Bornscheuer UT, Kazlauskas RJ (2006) Lipases and esterases: sections 5.3–5.4. In: Bornscheuer UT, Kazlauskas RJ (eds) Hydrolases in organic synthesis. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 141–183
Bornscheuer UT, Kazlauskas RJ (2006) Lipases and esterases: sections 5.1–5.2. In: Bornscheuer UT, Kazlauskas RJ (eds) Hydrolases in organic synthesis. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 61–140
Schmidtke AJ, Hanson ND (2008) Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3922–3927
Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M et al (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63
Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403
Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351
Mahajan-Miklos S, Rahme LG, Ausubel FM (2000) Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37:981–988
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964
Kovacic F (2010) Novel phospholipases A of Pseudomonas aeruginosa: biochemical characterisation and cellular localisation. PhD thesis, Heinrich-Heine-Universität Düsseldorf, Germany
Adam PB, Adriana IV, Alain F, Genevieve B, Paula JW et al (2004) A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol 53:1089–1098
Luberto C, Stonehouse MJ, Collins EA, Marchesini N, El-Bawab S et al (2003) Purification, characterization, and identification of a sphingomyelin synthase from Pseudomonas aeruginosa. PlcH is a multifunctional enzyme. J Biol Chem 278:32733–32743
Wohlfarth S, Hoesche C, Strunk C, Winkler UK (1992) Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAO1. J Gen Microbiol 138:1325–1335
Ostroff RM, Vasil AI, Vasil ML (1990) Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 172:5915–5923
Salacha R, Kovacic F, Brochier-Armanet C, Wilhelm S, Tommassen J et al (2010) The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system. Environ Microbiol 12:1498–1512
Vasil M (2006) Pseudomonas aeruginosa phospholipases and phospholipids. In: Levesque R, Ramos J-L (eds) Pseudomonas. Springer, New York, pp 69–97
Wilderman PJ, Vasil AI, Johnson Z, Vasil ML (2001) Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol Microbiol 39:291–303
Pesaresi A, Lamba D (2005) Crystallization, X-ray diffraction analysis and phasing of carboxylesterase PA3859 from Pseudomonas aeruginosa. Biochim Biophys Acta 1752:197–201
Martinez A, Ostrovsky P, Nunn DN (1999) LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34:317–326
Sanchez DG, Otero LH, Hernandez CM, Serra AL, Encarnacion S et al (2012) A Pseudomonas aeruginosa PAO1 acetylcholinesterase is encoded by the PA4921 gene and belongs to the SGNH hydrolase family. Microbiol Res 167:317–325
Wilhelm S, Tommassen J, Jaeger KE (1999) A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977–6986
Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397
Jaeger KE, Holliger P (2010) Chemical biotechnology—a marriage of convenience and necessity. Curr Opin Biotechnol 21:711–712
Sitkiewicz I, Stockbauer KE, Musser JM (2007) Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 15:63–69
Istivan TS, Coloe PJ (2006) Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology 152:1263–1274
Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183
Hausmann S, Jaeger KE (2010) Lipolytic enzymes from bacteria. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1099–1126
Beisson F, Tiss A, Rivière C, Verger R (2000) Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Technol 102:133–153
Alberghina L, Schmid R, Verger R (1991) Lipases: structure, mechanism, and genetic engineering: contributions to the CEC-GBF international workshop, September 13 to 15, 1990. VCH, Braunschweig, Germany
Jaeger KE, Ransac S, Koch HB, Ferrato F, Dijkstra BW (1993) Topological characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS Lett 332:143–149
Kugimiya W, Otani Y, Hashimoto Y, Takagi Y (1986) Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem Biophys Res Commun 141:185–190
Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300
Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213
Gubash SM (1991) Improved egg-yolk agar plate medium for the detection of clostridial phospholipase C activity. Res Microbiol 142:87–93
Arzoglou P, Goudoula C, Tsantili P, Lessinger JM, Ferard G et al (1994) Transferability of lipase titrimetric assays: deductions from an interlaboratory study. Eur J Clin Chem Clin Biochem 32:773–777
Abousalham A, Verger R (2000) Egg yolk lipoproteins as substrates for lipases. Biochim Biophys Acta 1485:56–62
Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670
Kim HK, Park SY, Lee JK, Oh TK (1998) Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci Biotechnol Biochem 62:66–71
Ma J, Zhang Z, Wang B, Kong X, Wang Y et al (2006) Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif 45:22–29
Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM (2008) Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol 381:324–340
Dolinsky VW, Douglas DN, Lehner R, Vance DE (2004) Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J 378:967–974
Jacks TJ, Kircher HW (1967) Fluorometric assay for the hydrolytic activity of lipase using fatty acyl esters of 4-methylumbelliferone. Anal Biochem 21:279–285
Flieger A, Gong S, Faigle M, Deeg M, Bartmann P et al (2000) Novel phospholipase A activity secreted by Legionella species. J Bacteriol 182:1321–1327
Flieger A, Neumeister B, Cianciotto NP (2002) Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect Immun 70:6094–6106
Fluxa VS, Wahler D, Reymond J-L (2008) Enzyme assay and activity fingerprinting of hydrolases with the red-chromogenic adrenaline test. Nat Protoc 3:1270–1277
Wahler D, Boujard O, Lefèvre F, Reymond J-L (2004) Adrenaline profiling of lipases and esterases with 1,2-diol and carbohydrate acetates. Tetrahedron 60:703–710
Rotticci D, Norin T, Hult K, Martinelle M (2000) An active-site titration method for lipases. Biochim Biophys Acta 1483:132–140
Asler IL, Kovacic F, Marchetti-Deschmann M, Allmaier G, Stefanic Z et al (2012) Inhibition of extracellular lipase from Streptomyces rimosus with 3,4-dichloroisocoumarin. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2012
Leroy E, Bensel N, Reymond J-L (2003) Fluorogenic cyanohydrin esters as chiral probes for esterase and lipase activity. Adv Synthesis Catal 345:859–865
Lagarde D, Nguyen H-K, Ravot G, Wahler D, Reymond J-L et al (2002) High-throughput screening of thermostable esterases for industrial bioconversions. Org Process Res Dev 6:441–445
Patel RN (2003) Microbial/enzymatic synthesis of chiral pharmaceutical intermediates. Curr Opin Drug Discov Dev 6:902–920
Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556
Rotticci D, Rotticci-Mulder JC, Denman S, Norin T, Hult K (2001) Improved enantioselectivity of a lipase by rational protein engineering. Chembiochem 2:766–770
Prasad S, Bocola M, Reetz MT (2011) Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis. Chemphyschem 12:1550–1557
Bornscheuer UT (2002) Methods to increase enantioselectivity of lipases and esterases. Curr Opin Biotechnol 13:543–547
Reetz M, Jaeger K-E (1999) Superior biocatalysts by directed evolution. In: Fessner W-D, Archelas A, Demirjian DC, Furstoss R, Griengl H et al (eds) Biocatalysis—from discovery to application. Springer, Berlin, pp 31–57
Reetz MT, Jaeger KE (2000) Enantioselective enzymes for organic synthesis created by directed evolution. Chemistry 6:407–412
Jaeger KE, Reetz MT (2000) Directed evolution of enantioselective enzymes for organic chemistry. Curr Opin Chem Biol 4:68–73
Reetz MT, Wilensek S, Zha D, Jaeger KE (2001) Directed evolution of an enantioselective enzyme through combinatorial multiple-cassette mutagenesis. Angew Chem 40:3589–3591
Liebeton K, Zonta A, Schimossek K, Nardini M, Lang D et al (2000) Directed evolution of an enantioselective lipase. Chem Biol 7:709–718
Reetz MT, Puls M, Carballeira JD, Vogel A, Jaeger KE et al (2007) Learning from directed evolution: further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. Chembiochem 8:106–112
Bocola M, Otte N, Jaeger KE, Reetz MT, Thiel W (2004) Learning from directed evolution: theoretical investigations into cooperative mutations in lipase enantioselectivity. Chembiochem 5:214–223
Kazlauskas RJ (2006) Quantitative assay of hydrolases for activity and selectivity using color changes. In: Reymond JL (ed) Enzyme assays. Wiley-VCH Verlag GmbH & Co. KGaA, Weinhem, pp 15–39
Fersht A (1985) Enzyme structure and mechanism. CRC Press Inc, Boca Raton, FL
Reetz MT, Zonta A, Schimossek K, Jaeger K-E, Liebeton K (1997) Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew Chem Int Ed Engl 36:2830–2832
Janes LE, Kazlauskas RJ, Quick E (1997) A fast spectrophotometric method to measure the enantioselectivity of hydrolases. J Org Chem 62:4560–4561
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this protocol
Cite this protocol
Jaeger, KE., Kovacic, F. (2014). Determination of Lipolytic Enzyme Activities. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_12
Download citation
DOI: https://doi.org/10.1007/978-1-4939-0473-0_12
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-4939-0472-3
Online ISBN: 978-1-4939-0473-0
eBook Packages: Springer Protocols