Structural Basis of Photoswitching in Fluorescent Proteins

  • Chenxi Duan
  • Virgile Adam
  • Martin Byrdin
  • Dominique BourgeoisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1148)


Fluorescent proteins have revolutionized life sciences because they allow noninvasive and highly specific labeling of biological samples. The subset of “phototransformable” fluorescent proteins recently attracted a widespread interest, as their fluorescence state can be modified upon excitation at defined wavelengths. The fluorescence emission of Reversibly Switchable Fluorescent Proteins (RSFPs), in particular, can be repeatedly switched on and off. RSFPs enable many new exciting modalities in fluorescence microscopy and biotechnology, including protein tracking, photochromic Förster Resonance Energy Transfer, super-resolution microscopy, optogenetics, and ultra-high-density optical data storage. Photoswitching in RSFPs typically results from chromophore cistrans isomerization accompanied by a protonation change, but other switching schemes based on, e.g., chromophore hydration/dehydration have also been discovered. In this chapter, we review the main structural features at the basis of photoswitching in RSFPs.

Key words

Fluorescent proteins Photoswitching Dronpa RSFPs Protein dynamics cistrans Isomerization Proton transfer Super-resolution microscopy 



Green fluorescent protein


Yellow fluorescent protein


Fluorescent proteins


Phototransformable fluorescent proteins


Reversibly switchable fluorescent proteins


Photoconvertible fluorescent proteins


Photoactivatable fluorescent proteins


Excited state proton transfer


Kinetic isotope effect




Photochromic Förster resonance energy transfer


Quantum mechanics/molecular mechanics


Single molecule localization microscopy


Photoactivated localization microscopy


Stochastic optical reconstruction microscopy


Stimulated emission depletion


Reversible saturable optical linear fluorescence transitions


Saturated structured illumination microscopy


(Photochromic) stochastic optical fluctuation imaging




Heteronuclear single quantum coherence


X-Ray-free electron laser


  1. 1.
    Dedecker P, De Schryver FC, Hofkens J (2013) Fluorescent proteins: shine on, you crazy diamond. J Am Chem Soc 135(7):2387–2402. doi: 10.1021/ja309768d PubMedCrossRefGoogle Scholar
  2. 2.
    Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163. doi: 10.1152/physrev.00038.2009 PubMedCrossRefGoogle Scholar
  3. 3.
    Subach FV, Verkhusha VV (2012) Chromophore transformations in red fluorescent proteins. Chem Rev 112(7):4308–4327. doi: 10.1021/cr2001965 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19(11):555–565. doi:S0962-8924(09)00199-8 [pii]10.1016/j.tcb.2009.09.003PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bourgeois D, Adam V (2012) Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 64(6):482–491. doi: 10.1002/iub.1023 PubMedCrossRefGoogle Scholar
  6. 6.
    Bourgeois D, Regis-Faro A, Adam V (2012) Photoactivated structural dynamics of fluorescent proteins. Biochem Soc Trans 40:531–538. doi: 10.1042/bst20120002 PubMedCrossRefGoogle Scholar
  7. 7.
    Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640):355–358PubMedCrossRefGoogle Scholar
  8. 8.
    Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44(18):7085–7094PubMedCrossRefGoogle Scholar
  9. 9.
    Nifosi R, Ferrari A, Arcangeli C, Tozzini V, Pellegrini V, Beltram F (2003) Photoreversible dark state in a tristable green fluorescent protein variant. J Phys Chem B 107(7):1679–1684. doi: 10.1021/Jp0266852 CrossRefGoogle Scholar
  10. 10.
    McAnaney TB, Zeng W, Doe CF, Bhanji N, Wakelin S, Pearson DS, Abbyad P, Shi X, Boxer SG, Bagshaw CR (2005) Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. Biochemistry 44(14):5510–5524PubMedCrossRefGoogle Scholar
  11. 11.
    Chudakov DM, Feofanov AV, Mudrik NN, Lukyanov S, Lukyanov KA (2003) Chromophore environment provides clue to “kindling fluorescent protein” riddle. J Biol Chem 278(9):7215–7219PubMedCrossRefGoogle Scholar
  12. 12.
    Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306(5700):1370–1373. doi: 10.1126/science.1102506 PubMedCrossRefGoogle Scholar
  13. 13.
    Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J (2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci U S A 102(27):9511–9516PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Andresen M, Wahl MC, Stiel AC, Grater F, Schafer LV, Trowitzsch S, Weber G, Eggeling C, Grubmuller H, Hell SW, Jakobs S (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci U S A 102(37):13070–13074. doi: 10.1073/pnas.0502772102 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Andresen M, Stiel AC, Trowitzsch S, Weber G, Eggeling C, Wahl MC, Hell SW, Jakobs S (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci U S A 104(32):13005–13009. doi: 10.1073/pnas.0700629104 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Mizuno H, Mal TK, Walchli M, Kikuchi A, Fukano T, Ando R, Jeyakanthan J, Taka J, Shiro Y, Ikura M, Miyawaki A (2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci U S A 105(27):9227–9232. doi:0709599105 [pii] 10.1073/pnas.0709599105PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dedecker P, Hotta J, Ando R, Miyawaki A, Engelborghs Y, Hofkens J (2006) Fast and reversible photoswitching of the fluorescent protein Dronpa as evidenced by fluorescence correlation spectroscopy. Biophys J 91(5): L45–L47PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fron E, Flors C, Schweitzer G, Habuchi S, Mizuno H, Ando R, Schryver FC, Miyawaki A, Hofkens J (2007) Ultrafast excited-state dynamics of the photoswitchable protein Dronpa. J Am Chem Soc 129(16): 4870–4871PubMedCrossRefGoogle Scholar
  19. 19.
    Wilmann PG, Turcic K, Battad JM, Wilce MC, Devenish RJ, Prescott M, Rossjohn J (2006) The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. J Mol Biol 364(2):213–224PubMedCrossRefGoogle Scholar
  20. 20.
    Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402(1):35–42PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Li X, Chung LW, Mizuno H, Miyawaki A, Morokuma K (2010) A theoretical study on the nature of on- and off-states of reversibly photoswitching fluorescent protein Dronpa: absorption, emission, protonation, and Raman. J Phys Chem B 114(2):1114–1126. doi: 10.1021/jp909947c PubMedCrossRefGoogle Scholar
  22. 22.
    Li X, Chung LW, Mizuno H, Miyawaki A, Morokuma K (2010) Primary events of photodynamics in reversible photoswitching fluorescent protein Dronpa. J Phys Chem Lett 1(23):3328–3333. doi: 10.1021/Jz101419p CrossRefGoogle Scholar
  23. 23.
    Warren MM, Kaucikas M, Fitzpatrick A, Champion P, Timothy Sage J, van Thor JJ (2013) Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa. Nat Commun 4:1461.
  24. 24.
    Quillin ML, Anstrom DM, Shu X, O'Leary S, Kallio K, Chudakov DM, Remington SJ (2005) Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. Biochemistry 44(15): 5774–5787PubMedCrossRefGoogle Scholar
  25. 25.
    Schüttrigkeit TA, von Feilitzsch T, Kompa CK, Lukyanov KA, Savitsky AP, Voityuk AA, Michel-Beyerle ME (2006) Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595. Chem Phys 323(2–3):149–160. doi: 10.1016/j.chemphys.2005.09.039 CrossRefGoogle Scholar
  26. 26.
    Schafer LV, Groenhof G, Klingen AR, Ullmann GM, Boggio-Pasqua M, Robb MA, Grubmuller H (2007) Photoswitching of the fluorescent protein asFP595: mechanism, proton pathways, and absorption spectra. Angew Chem Int Ed 46(4):530–536CrossRefGoogle Scholar
  27. 27.
    Schafer LV, Groenhof G, Boggio-Pasqua M, Robb MA, Grubmuller H (2008) Chromophore protonation state controls photoswitching of the fluoroprotein asFP595. PLoS Comput Biol 4(3):e1000034. doi: 10.1371/journal.pcbi.1000034 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Grigorenko BL, Polyakov IV, Savitsky AP, Nemukhin AV (2013) Unusual emitting states of the kindling fluorescent protein: appearance of the cationic chromophore in the GFP family. J Phys Chem B 117(24):7228–7234. doi: 10.1021/jp402149q PubMedCrossRefGoogle Scholar
  29. 29.
    Ando R, Flors C, Mizuno H, Hofkens J, Miyawaki A (2007) Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys J 92(12):L97–L99. doi:biophysj.107.105882 [pii] 10.1529/biophysj.107.105882PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Andresen M, Stiel AC, Folling J, Wenzel D, Schonle A, Egner A, Eggeling C, Hell SW, Jakobs S (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26(9):1035–1040. doi:nbt.1493 [pii] 10.1038/nbt.1493PubMedCrossRefGoogle Scholar
  31. 31.
    Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci U S A 104(16):6672–6677PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Subach FV, Zhang L, Gadella TW, Gurskaya NG, Lukyanov KA, Verkhusha VV (2010) Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol 17(7):745–755. doi:10.1016/j.chembiol.2010.05.022 S1074-5521(10)00213-9 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Pletnev S, Subach FV, Dauter Z, Wlodawer A, Verkhusha VV (2012) A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP. J Mol Biol 417(3):144–151. doi: 10.1016/j.jmb.2012.01.044 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci U S A 109(12):4455–4460. doi: 10.1073/pnas.1113770109 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci U S A 105(47):18343–18348. doi:0805949105 [pii] 10.1073/pnas.0805949105PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Adam V, Moeyaert B, David CC, Mizuno H, Lelimousin M, Dedecker P, Ando R, Miyawaki A, Michiels J, Engelborghs Y, Hofkens J (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18(10):1241–1251. doi: 10.1016/j.chembiol.2011.08.007 PubMedCrossRefGoogle Scholar
  37. 37.
    Bizzarri R, Serresi M, Cardarelli F, Abbruzzetti S, Campanini B, Viappiani C, Beltram F (2010) Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable. J Am Chem Soc 132(1):85–95. doi: 10.1021/ja9014953 PubMedCrossRefGoogle Scholar
  38. 38.
    Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478(7368):204–208. doi: 10.1038/nature10497 PubMedCrossRefGoogle Scholar
  39. 39.
    Grotjohann T, Testa I, Reuss M, Brakemann T, Eggeling C, Hell SW, Jakobs S (2012) rsEGFP2 enables fast RESOLFT nanoscopy of living cells. ELife 1 1:e00248. doi: 10.7554/eLife.00248.00001 CrossRefGoogle Scholar
  40. 40.
    Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C, Wahl MC, Hell SW, Jakobs S (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29(10):942–947. doi: 10.1038/nbt.1952 PubMedCrossRefGoogle Scholar
  41. 41.
    Faro AR, Adam V, Carpentier P, Darnault C, Bourgeois D, de Rosny E (2010) Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochem Photobiol Sci 9(2):254–262. doi: 10.1039/b9pp00121b PubMedCrossRefGoogle Scholar
  42. 42.
    Bourgeois D, Royant A (2005) Advances in kinetic protein crystallography. Curr Opin Struct Biol 15(5):538–547. doi:S0959-440X(05)00150-8 [pii] 10.1016/ Scholar
  43. 43.
    Royant A, Carpentier P, Ohana J, McGeehan J, Paetzold B, Noirclerc-Savoye M, Vernede X, Adam V, Bourgeois D (2007) Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements. J Appl Cryst 40:1105–1112. doi: 10.1107/S0021889807044196 CrossRefGoogle Scholar
  44. 44.
    Carpentier P, Royant A, Ohana J, Bourgeois D (2007) Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy. J Appl Cryst 40:1113–1122. doi: 10.1107/S0021889807044202 CrossRefGoogle Scholar
  45. 45.
    Gayda S, Nienhaus K, Nienhaus GU (2012) Mechanistic insights into reversible photoactivation in proteins of the GFP family. Biophys J 103(12):2521–2531PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Adam V, Nienhaus K, Bourgeois D, Nienhaus GU (2009) Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein dendra2. Biochemistry 48(22):4905–4915. doi: 10.1021/bi900383a PubMedCrossRefGoogle Scholar
  47. 47.
    Faro AR, Carpentier P, Jonasson G, Pompidor G, Arcizet D, Demachy I, Bourgeois D (2011) Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron. J Am Chem Soc 133(41):16362–16365. doi: 10.1021/ja207001y PubMedCrossRefGoogle Scholar
  48. 48.
    Fang C, Frontiera RR, Tran R, Mathies RA (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462(7270):200–204. doi: 10.1038/nature08527 PubMedCrossRefGoogle Scholar
  49. 49.
    Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP, Weierstall U, Doak RB, Maia FR, Martin AV, Schlichting I, Lomb L, Coppola N, Shoeman RL, Epp SW, Hartmann R, Rolles D, Rudenko A, Foucar L, Kimmel N, Weidenspointner G, Holl P, Liang M, Barthelmess M, Caleman C, Boutet S, Bogan MJ, Krzywinski J, Bostedt C, Bajt S, Gumprecht L, Rudek B, Erk B, Schmidt C, Homke A, Reich C, Pietschner D, Struder L, Hauser G, Gorke H, Ullrich J, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel KU, Messerschmidt M, Bozek JD, Hau-Riege SP, Frank M, Hampton CY, Sierra RG, Starodub D, Williams GJ, Hajdu J, Timneanu N, Seibert MM, Andreasson J, Rocker A, Jonsson O, Svenda M, Stern S, Nass K, Andritschke R, Schroter CD, Krasniqi F, Bott M, Schmidt KE, Wang X, Grotjohann I, Holton JM, Barends TR, Neutze R, Marchesini S, Fromme R, Schorb S, Rupp D, Adolph M, Gorkhover T, Andersson I, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Spence JC (2011) Femtosecond X-ray protein nanocrystallography. Nature 470(7332):73–77. doi: 10.1038/nature09750 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Yang JS, Huang GJ, Liu YH, Peng SM (2008) Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem Commun (Camb) 11:1344–1346. doi: 10.1039/b717714c CrossRefGoogle Scholar
  51. 51.
    Pletnev S, Shcherbo D, Chudakov DM, Pletneva N, Merzlyak EM, Wlodawer A, Dauter Z, Pletnev V (2008) A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J Biol Chem 283(43):28980–28987. doi:M800599200 [pii] 10.1074/jbc.M800599200PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Violot S, Carpentier P, Blanchoin L, Bourgeois D (2009) Reverse pH-dependence of chromophore protonation explains the large stokes shift of the red fluorescent protein mKeima. J Am Chem Soc 131(30):10356–10357. doi: 10.1021/ja903695n PubMedCrossRefGoogle Scholar
  53. 53.
    Petersen J, Wilmann PG, Beddoe T, Oakley AJ, Devenish RJ, Prescott M, Rossjohn J (2003) The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem 278(45):44626–44631PubMedCrossRefGoogle Scholar
  54. 54.
    Zhou XX, Chung HK, Lam AJ, Lin MZ (2012) Optical control of protein activity by fluorescent protein domains. Science 338(6108):810–814. doi: 10.1126/science.1226854 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Kao Y-T, Zhu X, Min W (2012) Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1115311109 Google Scholar
  56. 56.
    Brakemann T, Weber G, Andresen M, Groenhof G, Stiel AC, Trowitzsch S, Eggeling C, Grubmuller H, Hell SW, Wahl MC, Jakobs S (2010) Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J Biol Chem 285(19):14603–14609. doi:M109.086314 [pii] 10.1074/jbc.M109.086314PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Olsen S, Lamothe K, Martinez TJ (2010) Protonic gating of excited-state twisting and charge localization in GFP chromophores: a mechanistic hypothesis for reversible photoswitching. J Am Chem Soc 132(4):1192–1193. doi: 10.1021/ja907447k PubMedCrossRefGoogle Scholar
  58. 58.
    Luin S, Voliani V, Lanza G, Bizzarri R, Amat P, Tozzini V, Serresi M, Beltram F (2009) Raman study of chromophore states in photochromic fluorescent proteins. J Am Chem Soc 131(1):96–103. doi:10.1021/ja804504b 10.1021/ja804504b [pii]PubMedCrossRefGoogle Scholar
  59. 59.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645PubMedCrossRefGoogle Scholar
  60. 60.
    Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104(51):20308–20313. doi: 10.1073/pnas.0710517105 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Hsu CJ, Baumgart T (2011) Spatial association of signaling proteins and F-actin effects on cluster assembly analyzed via photoactivation localization microscopy in T cells. PLoS One 6(8):e23586. doi: 10.1371/journal.pone.0023586 PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292. doi: 10.1073/pnas.0907866106 PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Dedecker P, Mo GCH, Dertinger T, Zhang J (2012) Widely accessible method for superresolution fluorescence imaging of living systems. Proc Natl Acad Sci U S A 109(27):10909–10914. doi: 10.1073/pnas.1204917109 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14(5):599–609PubMedCrossRefGoogle Scholar
  67. 67.
    Dedecker P, Hotta J, Flors C, Sliwa M, Uji-i H, Roeffaers MB, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J Am Chem Soc 129(51):16132–16141. doi: 10.1021/ja076128z PubMedCrossRefGoogle Scholar
  68. 68.
    Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102(49):17565–17569PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086. doi: 10.1073/pnas.0406877102 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG (2011) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109:E135–E143. doi: 10.1073/pnas.1107547108 PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Fuchs J, Bohme S, Oswald F, Hedde PN, Krause M, Wiedenmann J, Nienhaus GU (2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7(8):627–630. doi: 10.1038/nmeth.1477 PubMedCrossRefGoogle Scholar
  72. 72.
    Adam V, Mizuno H, Grichine A, Hotta JI, Yamagata Y, Moeyaert B, Nienhaus GU, Miyawaki A, Bourgeois D, Hofkens J (2010) Data storage based on photochromic and photoconvertible fluorescent proteins. J Biotechnol 4(6):377–390. doi:S0168-1656(10)00186-0 [pii] 10.1016/j.jbiotec.2010.04.001Google Scholar
  73. 73.
    Mizuno H, Dedecker P, Ando R, Fukano T, Hofkens J, Miyawaki A (2010) Higher resolution in localization microscopy by slower switching of a photochromic protein. Photochem Photobiol Sci 9(2):239–248. doi: 10.1039/b9pp00124g PubMedCrossRefGoogle Scholar
  74. 74.
    Nguyen Bich N, Moeyaert B, Van Hecke K, Dedecker P, Mizuno H, Hofkens J, Van Meervelt L (2012) Structural basis for the influence of a single mutation K145N on the oligomerization and photoswitching rate of Dronpa. Acta Crystallogr D Biol Crystallogr 68(12):1653–1659. doi: 10.1107/s0907444912039686 PubMedCrossRefGoogle Scholar
  75. 75.
    Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124(25):7481–7489PubMedCrossRefGoogle Scholar
  76. 76.
    Song L, Jares-Erijman EA, Jovin TM (2002) A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J Photochem Photobiol Chem 150:177–185CrossRefGoogle Scholar
  77. 77.
    Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J, Schonle A, Eggeling C, Egner A, Hell SW, Jakobs S (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95(6):2989–2997. doi:doi:biophysj.108.130146 [pii] 10.1529/biophysj.108.130146PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Subach OM, Malashkevich VN, Zencheck WD, Morozova KS, Piatkevich KD, Almo SC, Verkhusha VV (2010) Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chem Biol 17(4):333–341. doi:S1074-5521(10)00086-4 [pii] 10.1016/j.chembiol.2010.03.005PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Adam V, Carpentier P, Violot S, Lelimousin M, Darnault C, Nienhaus GU, Bourgeois D (2009) Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. J Am Chem Soc 131(50):18063–18065. doi: 10.1021/ja907296v PubMedCrossRefGoogle Scholar
  80. 80.
    Roy A, Field MJ, Adam V, Bourgeois D (2011) The nature of transient dark states in a photoactivatable fluorescent protein. J Am Chem Soc 133(46):18586–18589. doi: 10.1021/ja2085355 PubMedCrossRefGoogle Scholar
  81. 81.
    Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275(34):25879–25882PubMedCrossRefGoogle Scholar
  82. 82.
    Abbruzzetti S, Grandi E, Viappiani C, Bologna S, Campanini B, Raboni S, Bettati S, Mozzarelli A (2005) Kinetics of acid-induced spectral changes in the GFPmut2 chromophore. J Am Chem Soc 127(2):626–635. doi: 10.1021/ja045400r PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chenxi Duan
    • 1
  • Virgile Adam
    • 1
  • Martin Byrdin
    • 1
  • Dominique Bourgeois
    • 2
    Email author
  1. 1.Institut de Biologie Structurale, Université Grenoble AlpesGrenobleFrance
  2. 2.Institut de Biologie Structurale (IBS),Université Grenoble AlpesGrenobleFrance

Personalised recommendations