Skip to main content

Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity

  • Protocol
  • First Online:
Photoswitching Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1148))

Abstract

In recent years, optogenetic methods became invaluable tools, particularly in neurobiological research. Most prominently, optogenetic methods utilize microbial rhodopsins to elicit neuronal de- or hyperpolarization. However, other optogenetic tools have emerged that allow influencing neuronal function by different approaches. In this chapter we describe the use of photoactivated adenylyl cyclases (PACs) as modulators of neuronal activity. Using Caenorhabditis elegans as a model organism, this chapter shows how to measure the effect of PAC photoactivation by behavioral and electrophysiological assays, as well as their significance to neurobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Errata (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. The C. elegans Sequencing Consortium [published errata appear in Science 1;283(5398):35 and 1999 Mar 26;283(5410):2103 and 1999 Sep 3;285(5433):1493] (1998). Science 282(5396): 2012–2018

    Article  Google Scholar 

  2. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1): 71–94

    CAS  PubMed Central  PubMed  Google Scholar 

  3. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165): 1–340

    Article  CAS  PubMed  Google Scholar 

  4. Husson SJ, Gottschalk A, Leifer AM (2013) Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol Cell 105(6):235–250. doi:10.1111/boc.201200069

    Article  CAS  PubMed  Google Scholar 

  5. Xu X, Kim SK (2011) The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nat Rev Genet 12(11):793–801. doi:10.1038/nrg3050

    Article  CAS  PubMed  Google Scholar 

  6. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639. doi:10.1038/nature05744

    Article  CAS  PubMed  Google Scholar 

  8. Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, Zhen M, Gottschalk A (2008) Optogenetic analysis of synaptic function. Nat Methods 5(10):895–902

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Hollopeter G, Jorgensen EM (2009) Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci U S A 106(26): 10823–10828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A (2011) PACalpha–an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116(4):616–625. doi:10.1111/j.1471-4159.2010.07148.x

    Article  CAS  PubMed  Google Scholar 

  11. Bucher D, Buchner E (2009) Stimulating PACalpha increases miniature excitatory junction potential frequency at the Drosophila neuromuscular junction. J Neurogenet 23(1–2):220–224. doi:10.1080/01677060802441356

    Article  CAS  PubMed  Google Scholar 

  12. Schroder-Lang S, Schwarzel M, Seifert R, Strunker T, Kateriya S, Looser J, Watanabe M, Kaupp UB, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4(1):39–42

    Article  PubMed  Google Scholar 

  13. Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gartner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286(2):1181–1188. doi:10.1074/jbc.M110.185496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285(53): 41501–41508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gross RE, Bagchi S, Lu X, Rubin CS (1990) Cloning, characterization, and expression of the gene for the catalytic subunit of cAMP-dependent protein kinase in Caenorhabditis elegans. Identification of highly conserved and unique isoforms generated by alternative splicing. J Biol Chem 265(12):6896–6907

    CAS  PubMed  Google Scholar 

  16. Tada M, Gengyo-Ando K, Kobayashi T, Fukuyama M, Mitani S, Kontani K, Katada T (2012) Neuronally expressed Ras-family GTPase Di-Ras modulates synaptic activity in Caenorhabditis elegans. Genes Cells 17(9):778–789. doi:10.1111/j.1365-2443.2012.01627.x

    Article  CAS  PubMed  Google Scholar 

  17. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415(6875):1047–1051

    Article  CAS  PubMed  Google Scholar 

  18. Yoshikawa S, Suzuki T, Watanabe M, Iseki M (2005) Kinetic analysis of the activation of photoactivated adenylyl cyclase (PAC), a blue-light receptor for photomovements of Euglena. Photochem Photobiol Sci 4(9):727–731

    Article  CAS  PubMed  Google Scholar 

  19. Nagahama T, Suzuki T, Yoshikawa S, Iseki M (2007) Functional transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory neurons. Neurosci Res 59(1):81–88. doi:10.1016/j.neures.2007.05.015

    Article  CAS  PubMed  Google Scholar 

  20. Bellmann D, Richardt A, Freyberger R, Nuwal N, Schwarzel M, Fiala A, Stortkuhl KF (2010) Optogenetically induced olfactory stimulation in drosophila larvae reveals the neuronal basis of Odor-Aversion behavior. Front Behav Neurosci 4:27. doi:10.3389/fnbeh.2010.00027

    Article  PubMed Central  PubMed  Google Scholar 

  21. Yasukawa H, Konno N, Haneda Y, Yamamori B, Iseki M, Shibusawa M, Ono Y, Kodaira K, Funada H, Watanabe M (2012) Photomanipulation of antibiotic susceptibility and biofilm formation of Escherichia coli heterologously expressing photoactivated adenylyl cyclase. J Gen Appl Microbiol 58(3):183–190

    Article  CAS  PubMed  Google Scholar 

  22. Ntefidou M, Ludtke T, Ahmad M, Hader DP (2006) Heterologous expression of photoactivated adenylyl cyclase (PAC) genes from the flagellate Euglena gracilis in insect cells. Photochem Photobiol 82(6):1601–1605. doi:10.1562/2006-04-06-RA-867

    Article  CAS  PubMed  Google Scholar 

  23. Hartmann A, Arroyo-Olarte RD, Imkeller K, Hegemann P, Lucius R, Gupta N (2013) Optogenetic modulation of an adenylate cyclase in Toxoplasma gondii demonstrates a requirement of the parasite cAMP for host-cell invasion and stage differentiation. J Biol Chem 288(19):13705–13717. doi:10.1074/jbc.M113.465583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nicol X, Hong KP, Spitzer NC (2011) Spatial and temporal second messenger codes for growth cone turning. Proc Natl Acad Sci U S A 108(33):13776–13781. doi:10.1073/pnas.1100247108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Von Stetina SE, Treinin M, Miller DM 3rd (2006) The motor circuit. Int Rev Neurobiol 69:125–167

    Article  Google Scholar 

  26. Husson SJ, Costa WS, Wabnig S, Stirman JN, Watson JD, Spencer WC, Akerboom J, Looger LL, Treinin M, Miller DM 3rd, Lu H, Gottschalk A (2012) Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors. Curr Biol 22:743–752. doi:10.1016/j.cub.2012.02.066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ramot D, Johnson BE, Berry TL Jr, Carnell L, Goodman MB (2008) The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3(5):e2208

    Article  PubMed Central  PubMed  Google Scholar 

  28. Husson SJ, Steuer Costa W, Schmitt C, Gottschalk A (2012) Keeping track of worm trackers. In: Hobert O (ed). doi:10.1895/wormbook.1.150.1

  29. Swierczek NA, Giles AC, Rankin CH, Kerr RA (2011) High-throughput behavioral analysis in C. elegans. Nat Methods 8(7):592–598. doi:10.1038/nmeth.1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Buckingham SD, Sattelle DB (2009) Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci 10:84. doi:10.1186/1471-2202-10-84

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gottschalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Costa, W.S., Liewald, J., Gottschalk, A. (2014). Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity. In: Cambridge, S. (eds) Photoswitching Proteins. Methods in Molecular Biology, vol 1148. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0470-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0470-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0469-3

  • Online ISBN: 978-1-4939-0470-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics