Skip to main content

Photoinduced Damage Resulting from Fluorescence Imaging of Live Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1148))

Abstract

The widespread application of fluorescence microscopy to study live cells has led to a greater understanding of numerous biological processes. Many techniques have been developed to uniquely label structures and track metabolic pathways using fluorophores in live cells. However, the photochemistry of nonnative compounds and the deposition of energy into the cell during imaging can result in unexpected and unwanted side effects. Herein, we examine potential live cell damage by first discussing common imaging considerations and modalities in fluorescence microscopy. We then consider several mechanisms by which various photochemical and photophysical phenomena cause cellular damage and introduce techniques that have leveraged these phenomena to intentionally create damage inside cells. Reviewing conditions under which intentional damage occurs can allow one to better predict when unintentional damage may be important. Finally, we delineate ways of checking for and reducing photochemical and photophysical damage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616):82–86. doi:10.1126/science.1082160

    Article  CAS  PubMed  Google Scholar 

  2. Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12): 910–919

    Article  CAS  PubMed  Google Scholar 

  3. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224. doi:10.1126/science.1124618

    Article  CAS  PubMed  Google Scholar 

  4. Wombacher R, Cornish VW (2011) Chemical tags: applications in live cell fluorescence imaging. J Biophotonics 4(6):391–402. doi:10.1002/jbio.201100018

    Article  CAS  PubMed  Google Scholar 

  5. Davidovits P, Egger MD (1969) Scanning laser microscope. Nature 223(5208):831–831

    Article  CAS  PubMed  Google Scholar 

  6. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  7. Hopt A, Neher E (2001) Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 80:2029–2036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zorov DB, Kobrinsky E, Juhaszova M, Sollott SJ (2004) Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Circ Res 95(3):239–252. doi:10.1161/01.RES.0000137875.42385.8e

    Article  CAS  PubMed  Google Scholar 

  9. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67(1):509–544. doi:10.1146/annurev.biochem.67.1.509

    Article  CAS  PubMed  Google Scholar 

  10. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97(22):11984–11989. doi:10.1073/pnas.97.22.11984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Surrey T, Elowitz MB, Wolf P-E, Yang F, Fo N, Shokat K, Leibler S (1998) Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc Natl Acad Sci U S A 95(8):4293–4298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16(6):714–721. doi:10.1016/j.sbi.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  13. Essers J, Vermeulen W, Houtsmuller AB (2006) DNA damage repair: anytime, anywhere? Curr Opin Cell Biol 18:240–246

    Article  CAS  PubMed  Google Scholar 

  14. Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19. doi:10.1016/0014-5793(91)80347-6

    Article  CAS  PubMed  Google Scholar 

  15. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    Article  CAS  PubMed  Google Scholar 

  16. Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215(2):213–219. doi:10.1111/j.1432-1033.1993.tb18025.x

    Article  CAS  PubMed  Google Scholar 

  17. Jacobson K, Rajfur Z, Vitriol E, Hahn K (2008) Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol 18(9):443–450. doi:10.1016/j.tcb.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  18. Ragàs X, Cooper LP, White JH, Nonell S, Flors C (2011) Quantification of photosensitized singlet oxygen production by a fluorescent protein. ChemPhysChem 12(1):161–165. doi:10.1002/cphc.201000919

    Article  PubMed  Google Scholar 

  19. Bulina ME, Lukyanov KA, Britanova OV, Onichtchouk D, Lukyanov S, Chudakov DM (2006) Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nat Protoc 1(2):947–953

    Article  CAS  PubMed  Google Scholar 

  20. Limoli CL, Ward JF (1993) A new method for introducing double-strand breaks into cellular DNA. Radiat Res 134:160–169

    Article  CAS  PubMed  Google Scholar 

  21. Saran M, Bors W (1990) Radical reactions in vivo: an overview. Radiat Environ Biophys 29:249–262

    Article  CAS  PubMed  Google Scholar 

  22. Teoule R (1987) Radiation-induced DNA damage and its repair. Int J Radiat Biol 51(4): 573–589

    Article  CAS  Google Scholar 

  23. Ward JF (1990) The yield of DNA double strand breaks produced intracellularly by ionizing radiation: a review. Int J Radiat Biol 57(6):1141–1150

    Article  CAS  PubMed  Google Scholar 

  24. Guo H, Tullius TD (2003) Gapped DNA is anisotropically bent. Proc Natl Acad Sci U S A 100(7):3743–3747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Siddiqi MA, Bothe E (1987) Single- and double-strand break formation in DNA irradiated in aqueous solution: dependence on dose and OH radical scavenger concentration. Radiat Res 112:449–463

    Article  CAS  PubMed  Google Scholar 

  26. Patrick MH, Rahn RO (1976) Photochemistry and photobiology of nucleic acids. Academic, New York

    Google Scholar 

  27. Houten BV, Croteau DL, Vecchia MJD, Wang H, Kisker C (2005) “Close-fitting sleeves”: DNA damage recognition by the UvrABC nuclease system. Mutat Res 577:92–117

    Article  PubMed  Google Scholar 

  28. Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    Article  PubMed  Google Scholar 

  29. Caldecott KW (2008) Single strand break repair and genetic disease. Nat Rev Genet 9:619–631

    CAS  PubMed  Google Scholar 

  30. Akerman BTE (1996) Single- and double-strand photocleavage of DNA by YO, YOYO, and TOTO. Nucleic Acids Res 24:1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tycon MA, Dial CF, Faison K, Melvin W, Fecko CJ (2012) Quantification of dye-mediated photodamage during single-molecule DNA imaging. Anal Biochem 426(1):13–21. doi:10.1016/j.ab.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  32. Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96(1):1–8. doi:10.1016/j.jphotobiol.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  33. Zigler JSJ, Lepe-Zuniga J, Vistica B, Gery I (1985) Analysis of the cytotoxic effects of light-exposed hepes-containing culture medium. In Vitro Cell Dev Biol 21(5):282–287. doi:10.1007/bf02620943

    Article  CAS  PubMed  Google Scholar 

  34. Vogel A, Noack J, Hattman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81(8):1015–1047. doi:10.1007/s00340-005-2036-6

    Article  CAS  Google Scholar 

  35. Nguyen J, Ma Y, Luo T, Bristow RG, Jaffray DA, Lu Q (2011) Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage. Proc Natl Acad Sci U S A 108:11778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pratt DA, Tallman KA, Porter NA (2011) Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks. Acc Chem Res 44(6): 458–467. doi:10.1021/ar200024c

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fan CHSJLJP (2002) Breakdown threshold and localized electron density in water induced by ultrashort laser pulses. J Appl Phys 91: 2530–2536

    Article  CAS  Google Scholar 

  38. Kong X, Mohanty SK, Stephens J, Heale JT, Gomez-Godinez V, Shi LZ, Kim J-S, Yokomori K, Berns MW (2009) Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res 37:e68. doi:10.1093/nar/gkp221

    Article  PubMed Central  PubMed  Google Scholar 

  39. König K, Riemann I, Fritzsche W (2001) Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt Lett 26(11):819–821

    Article  PubMed  Google Scholar 

  40. Supatto W, Debarre D, Moulia B, Brouzes E, Martin J-L, Farge E, Beaurepaire E (2005) In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci U S A 102(4):1047–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Heisterkamp A, Maxwell IZ, Mazur E, Underwood JM, Nickerson JA, Kumar S, Ingber DE (2005) Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt Express 13(10):3690–3696

    Article  CAS  PubMed  Google Scholar 

  42. Kuetemeyer K, Rezgui R, Lubatschowski H, Heisterkamp A (2010) Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery. Biomed Opt Express 1(2):587–597

    Article  PubMed Central  PubMed  Google Scholar 

  43. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644. doi:10.1021/cr010379n

    Article  CAS  PubMed  Google Scholar 

  44. Tycon MA, Chakraborty A, Fecko CJ (2011) Generation of DNA photolesions by two-photon absorption of a frequency-doubled Ti:sapphire laser. J Photochem Photobiol B 102(2):161–168

    Article  CAS  PubMed  Google Scholar 

  45. Daddysman MK, Fecko CJ (2011) DNA multiphoton absorption generates localized damage for studying repair dynamics in live cells. Biophys J 101(9):2294–2303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Meldrum RA, Botchway SW, Wharton CW, Hirst GJ (2003) Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption. EMBO Rep 4(12):1144–1149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Dinant C, Md J, Essers J, Cappellen WA, Kanaar R, Houtsmuller AB, Vermeulen W (2007) Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. J Cell Sci 120:2731–2740

    Article  CAS  PubMed  Google Scholar 

  48. Trautlein D, Deibler M, Leitenstorfer A, Ferrando-May E (2010) Specific local induction of DNA strand breaks by infrared multi-photon absorption. Nucleic Acids Res 38(3):e14. doi:10.1093/nar/gkp932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. König K (2001) Cellular response to laser radiation in fluorescence microscopes. In: Periasamy A (ed) Methods in cellular imaging. Oxford University Press, Oxford, pp 236–251

    Chapter  Google Scholar 

  50. Tirlapur UK, Konig K, Peuckert C, Krieg R, Halbhuber K-J (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp Cell Res 263: 88–97

    Article  CAS  PubMed  Google Scholar 

  51. König K, So PTC, Mantulin WW, Gratton E (1997) Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Opt Lett 22(2):135–136

    Article  PubMed  Google Scholar 

  52. König K, Becker TW, Fischer P, Riemann I, Halbhuber KJ (1999) Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes. Opt Lett 24(2):113–115

    Article  PubMed  Google Scholar 

  53. Tirlapur UK, Konig K (2001) Femtosecond near-infrared laser pulse induced strand breaks in mammalian cells. Cell Mol Biol 47(18): OL131–OL134

    CAS  PubMed  Google Scholar 

  54. Sacconi L, Dombeck DA, Webb WW (2006) Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials. Proc Natl Acad Sci U S A 103(9):3124–3129. doi:10.1073/pnas.0511338103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Altman RB, Terry DS, Zhou Z, Zheng Q, Geggier P, Kolster RA, Zhao Y, Javitch JA, Warren JD, Blanchard SC (2012) Cyanine fluorophore derivatives with enhanced photostability. Nat Methods 9(1):68–71

    Article  CAS  Google Scholar 

  56. Mueller F, Mazza D, Stasevich TJ, McNally JG (2010) FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin Cell Biol 22(3): 403–411. doi:10.1016/j.ceb.2010.03.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65(2):251–297

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Funding for this work was provided by the National Science Foundation under Grant No. PHY-1150017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Fecko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Daddysman, M.K., Tycon, M.A., Fecko, C.J. (2014). Photoinduced Damage Resulting from Fluorescence Imaging of Live Cells. In: Cambridge, S. (eds) Photoswitching Proteins. Methods in Molecular Biology, vol 1148. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0470-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0470-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0469-3

  • Online ISBN: 978-1-4939-0470-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics