Advertisement

Animal Models to Evaluate Bacterial Biofilm Development

  • Kim Thomsen
  • Hannah Trøstrup
  • Claus MoserEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1147)

Abstract

Medical biofilms have attracted substantial attention especially in the past decade. Animal models are contributing significantly to understand the pathogenesis of medical biofilms. In addition, animal models are an essential tool in testing the hypothesis generated from clinical observations in patients and preclinical testing of agents showing in vitro antibiofilm effect. Here, we describe three animal models — two non-foreign body Pseudomonas aeruginosa biofilm models and a foreign body Staphylococcus aureus model.

Key words

Chronic lung infection Chronic wound infection Pseudomonas aeruginosa Staphylococcus aureus Animal models 

Notes

Acknowledgements

Mark Shirtliff contributed fully as a co-author for this chapter and should be regarded as such.

References

  1. 1.
    Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2:288–356CrossRefGoogle Scholar
  3. 3.
    Hall-Stoodley L, Stoodley P, Kathju S et al (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145PubMedCrossRefGoogle Scholar
  4. 4.
    Moser C, Jensen PO, Kobayashi O et al (2002) Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response. Clin Exp Immunol 127:206–213PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Moser C, Hougen HP, Song Z et al (1999) Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response. APMIS 107: 1093–1100PubMedCrossRefGoogle Scholar
  6. 6.
    Prabhakara R, Harro JM, Leid JG et al (2011) Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun 79:5010–5018PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Trøstrup H, Thomsen K, Christophersen LJ et al (2013) Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair Regen 21:292–299PubMedCrossRefGoogle Scholar
  8. 8.
    Brady RA, Leid JG, Calhoun JH et al (2008) Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52:13–22PubMedCrossRefGoogle Scholar
  9. 9.
    Christensen LD, Moser C, Jensen PO et al (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153:2312–2320PubMedCrossRefGoogle Scholar
  10. 10.
    Pedersen SS, Shand GH, Hansen BL, Hansen GN (1990) Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS 98:203–211PubMedCrossRefGoogle Scholar
  11. 11.
    Moser C, Johansen HK, Song Z et al (1997) Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. APMIS 105:838–842PubMedCrossRefGoogle Scholar
  12. 12.
    Calum H, Moser C, Jensen PO et al (2009) Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection. Clin Exp Immunol 156:102–110PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Li D, Gromov K, Soballe K et al (2008) Quantitative mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. J Orthop Res 26:96–105PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Prabhakara R, Harro JM, Leid JG et al (2011) Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect Immun 79:1789–1796PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Harro JM, Daugherty S, Bruno VM et al (2013) Draft genome sequence of the methicillin-resistant Staphylococcus aureus isolate MRSA-M2. Genome Announc 1:e00037-12PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphylococcus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186:4486–4491PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Brady RA, O’May GA, Leid JG et al (2011) Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infect Immun 79:1797–1803PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Moser C, Van Gennip M, Bjarnsholt T et al (2009) Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 117:95–107PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    van Gennip M, Moser C, Christensen LD et al (2009) Augmented effect of early antibiotic treatment in mice with experimental lung infections due to sequentially adapted mucoid strains of Pseudomonas aeruginosa. J Antimicrob Chemother 64:1241–1250PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Clinical MicrobiologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
  2. 2.Department of International Health, Immunology and MicrobiologyRigshospitalet and Copenhagen UniversityCopenhagenDenmark

Personalised recommendations