Experimental Approaches to Investigating the Vaginal Biofilm Microbiome

  • Marc M. BaumEmail author
  • Manjula Gunawardana
  • Paul Webster
Part of the Methods in Molecular Biology book series (MIMB, volume 1147)


Unraveling the complex ecology of the vaginal biofilm microbiome relies on a number of complementary techniques. Here, we describe the experimental approaches for studying vaginal microbial biofilm samples with a focus on specimen preparation for subsequent analysis. The techniques include fluorescence microscopy, fluorescence in situ hybridization, and scanning and transmission electron microscopy. Isolation of microbial DNA and RNA from these samples is covered along with a brief discussion of chemical analysis methods.

Key words

Vaginal microbiome Microbial biofilms Fluorescence microscopy Fluorescence in situ hybridization Scanning electron microscopy Transmission electron microscopy Genomic microbial DNA RNA Correlative microscopy 



Research reported in this publication was supported, in part, by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI100744. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  2. 2.
    Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113PubMedCrossRefGoogle Scholar
  3. 3.
    Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122PubMedCrossRefGoogle Scholar
  4. 4.
    Hillier SL (2005) The complexity of microbial diversity in bacterial vaginosis. N Engl J Med 353:1886–1887PubMedCrossRefGoogle Scholar
  5. 5.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Romero R, Schaudinn C, Kusanovic JP et al (2008) Detection of a microbial biofilm in intraamniotic infection. Am J Obstet Gynecol 198:135.e1–135.e5CrossRefGoogle Scholar
  7. 7.
    Morales DK, Hogan DA (2010) Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog 6:e1000886PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Turnbaugh PJ, Ley RE, Hamady M et al (2007) The Human Microbiome Project. Nature 449:804–810PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Peterson J, Garges S, Giovanni M et al (2009) The NIH Human Microbiome Project. Genome Res 19:2317–2323PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gajer P, Brotman RM, Bai GY et al (2012) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4:132ra52PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108:4680–4687PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Gunawardana M, Moss JA, Smith TJ et al (2011) Microbial biofilms on the surface of intravaginal rings worn in non-human primates. J Med Microbiol 60:828–837PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Keller MJ, Malone AM, Carpenter CA et al (2012) Safety and pharmacokinetics of acyclovir in women following release from a silicone elastomer vaginal ring. J Antimicrob Chemother 67:2005–2012PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedCentralPubMedGoogle Scholar
  15. 15.
    Orphan VJ (2009) Methods for unveiling cryptic microbial partnerships in nature. Curr Opin Microbiol 12:231–237PubMedCrossRefGoogle Scholar
  16. 16.
    Lawrence JR, Nie TR, Swerhone GDW (1998) Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Methods 32:253–261CrossRefGoogle Scholar
  17. 17.
    Wigglesworth-Cooksey B, Cooksey KE (2005) Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Appl Environ Microbiol 71:428–435PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bahulikar RA, Kroth PG (2007) Localization of EPS components secreted by freshwater diatoms using differential staining with fluorophore-conjugated lectins and other fluorochromes. Eur J Phycol 42:199–208CrossRefGoogle Scholar
  19. 19.
    Lawrence JR, Swerhone GDW, Kuhlicke U, Neu TR (2007) In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 53:450–458PubMedCrossRefGoogle Scholar
  20. 20.
    Schaudinn C, Carr G, Gorur A et al (2009) Imaging of endodontic biofilms by combined microscopy (FISH/cLSM—SEM). J Microsc 235:124–127PubMedCrossRefGoogle Scholar
  21. 21.
    Boskey ER, Moench TR, Hees PS, Cone RA (2003) A self-sampling method to obtain large volumes of undiluted cervicovaginal secretions. Sex Transm Dis 30:107–109PubMedCrossRefGoogle Scholar
  22. 22.
    Dezzutti CS, Hendrix CW, Marrazzo JM et al (2011) Performance of swabs, lavage, and diluents to quantify biomarkers of female genital tract soluble mucosal mediators. PLoS One 6:e23136PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Jespers V, Francis SC, van de Wijgert J, Crucitti T (2011) Methodological issues in sampling the local immune system of the female genital tract in the context of HIV prevention trials. Am J Reprod Immunol 65:368–376PubMedCrossRefGoogle Scholar
  24. 24.
    Loy A, Maixner F, Wagner M, Horn M (2007) ProbeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35:D800–D804PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Miller A, Spagnuolo RA, Baras V, Pyles RB (2010) High-throughput automated extraction of RNA using the Aurum™ total RNA 96 kit. Bio-Rad Laboratories Tech Notes, Bulletin 0618Google Scholar
  26. 26.
    Amann RI, Krumholz L, Stahl DA (1990) Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770PubMedCentralPubMedGoogle Scholar
  27. 27.
    Roller C, Wagner M, Amann R et al (1994) In situ probing of gram positive bacteria with high DNA G + C content using 23S-ribosomal-RNA-targeted oligonucleotides. Microbiology 140:2849–2858PubMedCrossRefGoogle Scholar
  28. 28.
    Glockner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726PubMedCentralPubMedGoogle Scholar
  29. 29.
    Baum MM, Kainović A, O’Keeffe T et al (2009) Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil. BMC Microbiol 9:103PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Filippov MP, Kohn R (1974) Determination of composition of alginates by infrared spectroscopic method. Chem Zvesti 28: 817–819Google Scholar
  31. 31.
    Sartori C, Finch DS, Ralph B, Gilding K (1997) Determination of the cation content of alginate thin films by FTIR spectroscopy. Polymer 38:43–51CrossRefGoogle Scholar
  32. 32.
    Beech I, Hanjagsit L, Kalaji M et al (1999) Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture. Microbiology 145:1491–1497PubMedCrossRefGoogle Scholar
  33. 33.
    Karadenizli A, Kolayli F, Ergen K (2007) A novel application of Fourier-transformed infrared spectroscopy: classification of slime from Staphylococci. Biofouling 23:63–71PubMedCrossRefGoogle Scholar
  34. 34.
    Marcotte L, Kegelaer G, Sandt C et al (2007) An alternative infrared spectroscopy assay for the quantification of polysaccharides in bacterial samples. Anal Biochem 361:7–14PubMedCrossRefGoogle Scholar
  35. 35.
    Serra D, Bosch A, Russo DM et al (2007) Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques. Anal Bioanal Chem 387: 1759–1767PubMedCrossRefGoogle Scholar
  36. 36.
    Lai SK, Wang YY, Hida K et al (2010) Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci U S A 107: 598–603PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Mills SE (2012) Histology for pathologists, 4th ed. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  38. 38.
    Dubochet J (1995) High-pressure freezing for cryoelectron microscopy. Trends Cell Biol 5:366–368PubMedCrossRefGoogle Scholar
  39. 39.
    Al-Amoudi A, Chang JJ, Leforestier A et al (2004) Cryo-electron microscopy of vitreous sections. EMBO J 23:3583–3588PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Al-Amoudi A, Norlen LPO, Dubochet J (2004) Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J Struct Biol 148:131–135PubMedCrossRefGoogle Scholar
  41. 41.
    Al-Amoudi A, Diez DC, Betts MJ, Frangakis AS (2007) The molecular architecture of cadherins in native epidermal desmosomes. Nature 450:832–838PubMedCrossRefGoogle Scholar
  42. 42.
    Al-Amoudi A, Frangakis AS (2013) Three-dimensional visualization of the molecular architecture of cell-cell junctions in situ by cryo-electron tomography of vitreous sections. Methods Mol Biol 961:97–117PubMedCrossRefGoogle Scholar
  43. 43.
    Giddings TH (2003) Freeze-substitution protocols for improved visualization of membranes in high-pressure frozen samples. J Microsc 212:53–61PubMedCrossRefGoogle Scholar
  44. 44.
    Carlemalm E, Villiger W, Hobot JA et al (1985) Low-temperature embedding with lowicryl resins—2 new formulations and some applications. J Microsc 140:55–63PubMedCrossRefGoogle Scholar
  45. 45.
    McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc 243: 227–233PubMedCrossRefGoogle Scholar
  46. 46.
    Dubochet J, McDowall AW, Menge B et al (1983) Electron microscopy of frozen hydrated bacteria. J Bacteriol 155:381–390PubMedCentralPubMedGoogle Scholar
  47. 47.
    Webster P, Wu S, Webster S et al (2004) Ultrastructural preservation of biofilms formed by non-typeable Hemophilus influenzae. Biofilms 1:165–182CrossRefGoogle Scholar
  48. 48.
    Levanon D, Stein H (1999) Tannic acid and thiocarbohydrazide as structural reinforcement agents in the preparation of rabbit knee articular cartilage for the scanning electron microscope. Histochem J 31:71–73PubMedCrossRefGoogle Scholar
  49. 49.
    Van Genderen IL, Vanmeer G, Slot JW et al (1991) Subcellular-localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution. J Cell Biol 115:1009–1019PubMedCrossRefGoogle Scholar
  50. 50.
    Robertson D, Monaghan P, Clarke C, Atherton AJ (1992) An appraisal of low-temperature embedding by progressive lowering of temperature into Lowicryl-HM20 for immunocytochemical studies. J Microsc 168: 85–100PubMedCrossRefGoogle Scholar
  51. 51.
    Bray DF, Bagu J, Koegler P (1993) Comparison of hexamethyldisilazane (HMDS), peldri II, and critical-point drying methods for scanning electron microscopy of biological specimens. Microsc Res Tech 26:489–495PubMedCrossRefGoogle Scholar
  52. 52.
    Webster P (2007) Microwave-assisted processing and embedding for transmission electron microscopy. In: Kuo J (ed) Electron microscopy: methods and protocols, 2nd edn. Humana Press, Totowa, NJ, pp 47–65CrossRefGoogle Scholar
  53. 53.
    Good NE, Winget GD, Winter W et al (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477PubMedCrossRefGoogle Scholar
  54. 54.
    Reynolds ES (1963) Use of lead citrate at high ph as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Venable JH, Coggesha R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Zhou X, Bent SJ, Schneider MG et al (2004) Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 150:2565–2573PubMedCrossRefGoogle Scholar
  57. 57.
    Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353:1899–1911PubMedCrossRefGoogle Scholar
  58. 58.
    Hyman RW, Fukushima M, Diamond L et al (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci U S A 102:7952–7957PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Oakley BB, Fiedler TL, Marrazzo JM, Fredricks DN (2008) Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis. Appl Environ Microbiol 74:4898–4909PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Spear GT, Sikaroodi M, Zariffard MR (2008) Comparison of the diversity of the vaginal microbiota in HIV-infected and HIV-uninfected women with or without bacterial vaginosis. J Infect Dis 198:1131–1140PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Hummelen R, Fernandes AD, Macklaim JM et al (2010) Deep sequencing of the vaginal microbiota of women with HIV. PLoS One 5:e12078PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Srinivasan S, Liu CZ, Mitchell CM et al (2010) Temporal variability of human vaginal bacteria and relationship with bacterial vaginosis. PLoS One 5:e10197PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    McNulty NP, Yatsunenko T, Hsiao A et al (2011) The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 3:106ra106PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Rey FE, Faith JJ, Bain J et al (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285: 22082–22090PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marc M. Baum
    • 1
    Email author
  • Manjula Gunawardana
    • 1
  • Paul Webster
    • 1
  1. 1.Department of ChemistryOak Crest Institute of SciencePasadenaUSA

Personalised recommendations