Biofilm-Growing Bacteria Involved in the Corrosion of Concrete Wastewater Pipes: Protocols for Comparative Metagenomic Analyses

  • Vicente Gomez-AlvarezEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1147)


Advances in high-throughput next-generation sequencing (NGS) technology for direct sequencing of environmental DNA (i.e., shotgun metagenomics) are transforming the field of microbiology. NGS technologies are now regularly being applied in comparative metagenomic studies, which provide the data for functional annotations, taxonomic comparisons, community profile, and metabolic reconstructions. For example, comparative metagenomic analysis of corroded pipes unveiled novel insights on the bacterial populations associated with the sulfur and nitrogen cycle, which may be directly or indirectly implicated in concrete wastewater pipe corrosion. The objective of this chapter is to describe the steps involved in the taxonomic and functional analysis of metagenome datasets from biofilm involved in microbial-induced concrete corrosion (MICC).

Key words

Metagenome 454 Pyrosequencing Next-generation sequencing (NGS) Metabolic pathways Function annotation Taxonomic classification 



The United States Environmental Protection Agency (USEPA) through the Office of Research and Development funded this research. R.P. Revetta and J.W. Santo Domingo of the USEPA participated in design and coordination of the study. It has been subjected to the Agency’s peer and administrative review and has been approved for external publication. Any opinions expressed in this manuscript are of the authors and do not necessarily reflect the official positions and policies of USEPA. Any mention of trade names or commercial products does not constitute endorsement or recommendation.


  1. 1.
    USEPA (United States Environmental Protection Agency) (2009) State of technology review report on rehabilitation of wastewater collection and water distribution systems. Office of Research and Development, Cincinnati, OH, EPA/600/R-09/048Google Scholar
  2. 2.
    USEPA (United States Environmental Protection Agency) (2002) State of technology review report on rehabilitation of wastewater collection and water distribution systems. USEPA Urban Watershed Management Branch, Edison, NJ, EPA/600/JA-02/226Google Scholar
  3. 3.
    Mori T, Nonaka T, Tazaki K et al (1992) Interactions of nutrients, moisture, and pH on microbial corrosion of concrete sewer pipes. Water Res 26:29–37CrossRefGoogle Scholar
  4. 4.
    Vollertsen J, Nielsen AH, Jensen HS et al (2008) Corrosion of concrete sewers—the kinetics of hydrogen sulfide oxidation. Sci Total Environ 394:162–170PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang L, De Schryver P, De Gusseme B et al (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42:1–12PubMedCrossRefGoogle Scholar
  6. 6.
    Vincke E, Boon N, Verstraete W (2001) Analysis of the microbial communities on corroded concrete sewer pipes—a case study. Appl Microbiol Biotechnol 57:776–785PubMedCrossRefGoogle Scholar
  7. 7.
    Okabe S, Ito T, Satoh H (2003) Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions. Appl Microbiol Biotechnol 63:322–334PubMedCrossRefGoogle Scholar
  8. 8.
    Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Satoh H, Odagiri M, Ito T, Okabe S (2009) Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Water Res 43:4729–4739PubMedCrossRefGoogle Scholar
  10. 10.
    Santo Domingo JW, Revetta RP, Iker B et al (2011) Molecular survey of concrete sewer biofilm microbial communities. Biofouling 27:993–1001PubMedCrossRefGoogle Scholar
  11. 11.
    Jones WJ (2010) High-throughput sequencing and metagenomics. Estuaries Coasts 33:944–952CrossRefGoogle Scholar
  12. 12.
    Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gilbert JA, Meyer F, Bailey MJ (2011) The future of microbial metagenomics (or is ignorance bliss?). ISME J 5:777–779PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp 2:3PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805PubMedCrossRefGoogle Scholar
  16. 16.
    Meyer F, Paarmann D, D'Souza M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Sun S, Chen J, Li W et al (2011) Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res 39:D546–D551PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Markowitz VM, Chen I-MA, Chu K et al (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123–D129PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Gerlach W, Jünemann S, Tille F et al (2009) WebCARMA: a web application for the functional and taxonomic classification of unassembled metagenomic reads. BMC Bioinformatics 10:430PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Huson DH, Mitra S, Ruscheweyh H-J et al (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721PubMedCrossRefGoogle Scholar
  23. 23.
    Prakash T, Taylor TD (2012) Functional assignment of metagenomic data: challenges and applications. Brief Bioinform 13:711–727PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gomez-Alvarez V, Revetta RP, Santo Domingo JW (2012) Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12:122PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Prosser JI (2010) Replicate or lie. Environ Microbiol 12:1806–1810PubMedCrossRefGoogle Scholar
  26. 26.
    Lennon JT (2011) Replication, lies and lesser-known truths regarding experimental design in environmental microbiology. Environ Microbiol 13:1383–1386PubMedCrossRefGoogle Scholar
  27. 27.
    Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:1314–1317PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedCentralPubMedGoogle Scholar
  29. 29.
    De Filippo C, Ramazzotti M, Fontana P, Cavalieri D (2012) Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Brief Bioinform 13:696–710PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Li W (2009) Analysis and comparison of very large metagenomes with fast clustering and functional annotation. BMC Bioinformatics 10:359–367PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485Google Scholar
  33. 33.
    Huse SM, Huber JA, Morrison HG et al (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Keegan KP, Trimble WL, Wilkening J et al (2012) A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE. PLoS Comput Biol 8:e1002541PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Gomez-Alvarez V, Revetta RP, Santo Domingo JW (2012) Metagenomic analyses of drinking water receiving different disinfection treatments. Appl Environ Microbiol 78:6095–6102PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bengtsson J, Hartmann M, Unterseher M et al (2012) Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets. Res Microbiol 163:407–412PubMedCrossRefGoogle Scholar
  37. 37.
    Bengtsson J, Eriksson KM, Hartmann M et al (2011) Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie Van Leeuwenhoek 100:471–475PubMedCrossRefGoogle Scholar
  38. 38.
    Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Beszteri B, Temperton B, Frickenhaus S, Giovannoni SJ (2010) Average genome size: a potential source of bias in comparative metagenomics. ISME J 4:1075–1077PubMedCrossRefGoogle Scholar
  40. 40.
    Raes J, Korbel JO, Lercher MJ et al (2007) Prediction of effective genome size in metagenomic samples. Genome Biol 8:R10PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Frank JA, Sørensen SJ (2011) Quantitative metagenomic analyses based on average genome size normalization. Appl Environ Microbiol 77:2513–2521PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Mitra S, Rupek P, Richter DC et al (2011) Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinformatics 12:S21PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Michie MG (1982) Use of the Bray-Curtis similarity measure in cluster analysis of foraminiferal data. Math Geol 14:661–667CrossRefGoogle Scholar
  45. 45.
    Wickelmaier F (2003) An introduction to MDS: reports from the Sound Quality Research Unit (SQRU) No. 7, 1–26.
  46. 46.
    McKenna JE (2003) An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ Model Software 18:205–220CrossRefGoogle Scholar
  47. 47.
    Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar
  48. 48.
    Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Office of Research and Development, U.S. Environmental Protection AgencyCincinnatiUSA

Personalised recommendations