Advertisement

Photodynamic Therapy as a Novel Antimicrobial Strategy Against Biofilm-Based Nosocomial Infections: Study Protocols

  • Francesco GiulianiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1147)

Abstract

Hospital-acquired infections (HAIs), also known as nosocomial infections, are one of the most serious health-care issues currently influencing health-care costs. Among them, those sustained by microbial biofilm represent a major public health concern. Here, we describe the experimental protocols for microbial biofilm inactivation relying on antimicrobial photodynamic therapy (APDT) as a new strategy for the control of these kinds of infections.

Key words

Antimicrobial photodynamic therapy (APDT) Photosensitizer (PS) RLP068/Cl Staphylococcus aureus Pseudomonas aeruginosa 

References

  1. 1.
    Guggenbichler JP, Assadian O, Boeswald M, Kramer A (2011) Incidence and clinical implication of nosocomial infections associated with implantable biomaterials—catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip 6:Doc18PubMedCentralPubMedGoogle Scholar
  2. 2.
    Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238PubMedGoogle Scholar
  3. 3.
    Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043PubMedCrossRefGoogle Scholar
  4. 4.
    Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40PubMedCrossRefGoogle Scholar
  5. 5.
    Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3: 436–450PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    O’Riordan K, Akilov OE, Hasan T (2005) The potential for photodynamic therapy in the treatment of localized infections. Photodiagnosis Photodyn Ther 2:247–262CrossRefGoogle Scholar
  7. 7.
    Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17:245–254PubMedCentralPubMedGoogle Scholar
  8. 8.
    Soncin M, Fabbris C, Busetti A et al (2002) Approaches to selectivity in the Zn(II)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochem Photobiol Sci 1:815–819PubMedCrossRefGoogle Scholar
  9. 9.
    Winckler KD (2007) Special section: focus on anti-microbial photodynamic therapy (PDT). J Photochem Photobiol B 86:43–44PubMedCrossRefGoogle Scholar
  10. 10.
    Giuliani F, Martinelli M, Cocchi A et al (2010) In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob Agents Chemother 54:637–642PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Fabris C, Soncin M, Mazzon E et al (2005) A novel tetracationic phthalocyanine as a potential skin phototherapeutic agent. Exp Dermatol 14:675–683PubMedCrossRefGoogle Scholar
  12. 12.
    Simonetti O, Cirioni O, Orlando F et al (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection. Br J Dermatol 164:987–995PubMedCrossRefGoogle Scholar
  13. 13.
    Kugelberg E, Norstrom T, Petersen TK et al (2005) Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 49:3435–3441PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Oliveira A, Almeida A, Carvalho CM et al (2009) Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores. J Appl Microbiol 105:1986–1995CrossRefGoogle Scholar
  15. 15.
    Caminos DA, Spesia MB, Pons P, Durantini EN (2008) Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N, N, N trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci 7:1071–1078PubMedCrossRefGoogle Scholar
  16. 16.
    Mantareva V, Kussovski V, Angelov I et al (2007) Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem 15:4829–4835PubMedCrossRefGoogle Scholar
  17. 17.
    Scalise I, Durantini EN (2005) Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorg Med Chem 13: 3037–3045PubMedCrossRefGoogle Scholar
  18. 18.
    Schastak S, Gitter B, Handzel R et al (2008) Improved photoinactivation of gram negative and gram-positive methicillin resistant bacterial strains using a new near infrared absorbing meso-tetrahydroporphyrin: a comparative study with a chlorine e6 photosensitizer photolon. Methods Find Exp Clin Pharmacol 30: 129–133PubMedCrossRefGoogle Scholar
  19. 19.
    Baldassarri L, Simpson WA, Donelli G, Christensen GD (1993) Variable fixation of staphylococcal slime by different histochemical fixatives. Eur J Clin Microbiol Infect Dis 12:866–868PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Molteni Therapeutics srlScandicci (Fi)Italy

Personalised recommendations