Chip Calorimetry for Evaluation of Biofilm Treatment with Biocides, Antibiotics, and Biological Agents

  • Frida Mariana Morais
  • Friederike Buchholz
  • Thomas MaskowEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1147)


Any growth or bioconversion in biofilms is accompanied by the release of heat. The heat (in J) is tightly related to the stoichiometry of the respective process via law of Hess, and the heat production rate (in W or J/s) is additionally related to the process kinetics. This heat and the heat production rate can nowadays be measured by modern calorimetry with extremely high sensitivity. Flow-through calorimetry allows the measurement of bioprocesses in biofilms in real time, without the need of invasive sample preparation and disturbing of biofilm processes. Furthermore, it can be applied for long-term measurements and is even applicable to turbid media. Chip or miniaturized calorimeters have the additional advantages of extremely short thermal equilibration times and the requirement of very small amounts of media and chemicals. The precision of flow-through chip calorimeters (about 3 mW/L) allows the detection of early stages of biofilm development (about 105 bacteria cm−2).

Key words

Calorimetry Antibiotic Biocides Antimicrobial agents Activity measurement Susceptibility testing Noninvasive Real-time monitoring 


  1. 1.
    Flemming H-C (2003) Role and levels of real-time monitoring for successful anti-fouling strategies—an overview. Water Sci Technol 47:1–8PubMedGoogle Scholar
  2. 2.
    Gnaiger E, Kemp RB (1990) Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta 1016:328–332PubMedCrossRefGoogle Scholar
  3. 3.
    Maskow T, Harms H (2006) Real time insights into bioprocesses using calorimetry: state of the art and potential. Eng Life Sci 6:66–277CrossRefGoogle Scholar
  4. 4.
    Dubrunfaut M (1856) Note sur al chaleur et le travail mecanique produits lar la fermentation vineuse. C R Acad Sci 42:945–948Google Scholar
  5. 5.
    Hill AV (1911) A new form of differential microcalorimeter, for the estimation of heat production in physiological, bacteriological or ferment reactions. J Physiol 43:260–285Google Scholar
  6. 6.
    Weppen P, Ebens J, Müller BG et al (1991) On-line estimation of biological oxygen demand using direct calorimetry on surface attached microbial cultures. Thermochim Acta 193:135–143CrossRefGoogle Scholar
  7. 7.
    Wentzien S, Sand W, Albertsen A et al (1994) Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography. Arch Microbiol 161:116–125CrossRefGoogle Scholar
  8. 8.
    von Rège H, Sand W (1998) Evaluation of biocide efficacy by microcalorimetric determination of microbial activity in biofilms. J Microbiol Methods 33:227–235CrossRefGoogle Scholar
  9. 9.
    Peitzsch M, Kiesel B, Harms H et al (2008) Real time analysis of Escherichia coli biofilms using calorimetry. Chem Eng Process 47:1000–1006CrossRefGoogle Scholar
  10. 10.
    Buchholz F, Harms H, Maskow T (2010) Biofilm research using calorimetry—a marriage made in heaven? Biotechnol J 5:1339–1350PubMedCrossRefGoogle Scholar
  11. 11.
    Buchholz F, Wolf A, Lerchner J et al (2010) Chip calorimetry for fast and reliable evaluation of bactericidal and bacteriostatic treatments of biofilms. Antimicrob Agents Chemother 54:312–319PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mariana F, Buchholz F, Lerchner J et al (2013) Chip-calorimetric monitoring of biofilm eradication with antibiotics provides mechanistic information. Int J Med Microbiol 303:158–165PubMedCrossRefGoogle Scholar
  13. 13.
    Buchholz F, Lerchner J, Mariana F et al (2012) Chip-calorimetry provides real time insights into the inactivation of biofilms by predatory bacteria. Biofouling 23:351–362CrossRefGoogle Scholar
  14. 14.
    Lerchner J, Wolf A, Wolf G et al (2006) A new micro-fluidic chip calorimeter for biochemical applications. Thermochim Acta 445:144–150CrossRefGoogle Scholar
  15. 15.
    Maskow T, Schubert T, Wolf A et al (2011) Potentials and limitations of miniaturized calorimeters for bioprocess monitoring. Appl Microbiol Biotechnol 92:55–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Frida Mariana Morais
    • 1
  • Friederike Buchholz
    • 1
  • Thomas Maskow
    • 1
    Email author
  1. 1.Department of Environmental MicrobiologyUFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations