Microbiological Methods for Target-Oriented Screening of Biofilm Inhibitors

  • Livia Leoni
  • Paolo LandiniEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1147)


The ability of many pathogenic bacteria to grow as a biofilm results in lower susceptibility to antibiotic treatments and to the host immune response, thus leading to the development of chronic infections. The understanding that biofilms can play an important role in bacterial virulence has prompted the search for inhibitors of biofilm development and of biofilm-related cellular processes. In this report, we present two examples of target-based microbiological screenings for antimicrobials endowed with anti-biofilm activity, aimed respectively at the inhibition of the signal molecule cyclic di-GMP and of quorum sensing.

Key words

Biofilm Antimicrobials Signal molecules Quorum sensing Acyl-homoserine lactone Elastase c-di-GMP Diguanylate cyclase 



We wish to thank Nadia Raffaelli for the protocol of the HPLC method for c-di-GMP determination and for critical reading. Work in P.L.’s laboratory has been supported by the Italian Foundation for Research on Cystic Fibrosis (project FFC#13/2009, with the contribution of Delegazione Novara and Delegazione Cosenza-2) and by the CHEM-PROFARMA-NET Research Program (Project RBPR05NWWC_004) from the Italian Ministry for University and Research.

Funding to L.L. has been provided by the Italian Foundation for Research on Cystic Fibrosis (projects FFC#14/2010 and FFC#13/2011, with the contribution of delegazione FFC di Vittoria-Ragusa, Delegazione FFC del Lago di Garda con Gruppi di Sostegno di Chivasso, dell’Isola Bergamasca e della Valpolicella, Delegazione FFC di Verbania e Antonio Guadagnin & Figlio).


  1. 1.
    Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  2. 2.
    Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368PubMedCrossRefGoogle Scholar
  5. 5.
    Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131PubMedGoogle Scholar
  6. 6.
    Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M (2010) Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med 12:e11PubMedCrossRefGoogle Scholar
  7. 7.
    Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Galloway WR, Hodgkinson JT, Bowden S et al (2012) Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 20:449–458PubMedCrossRefGoogle Scholar
  9. 9.
    Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362: 1119–1134PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81PubMedCrossRefGoogle Scholar
  11. 11.
    Imperi F, Massai F, Ramachandran Pillai C et al (2013) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Frei R, Breitbach AS, Blackwell HE (2012) 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew Chem Int Ed Engl 51:5226–5229PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kader A, Simm R, Gerstel U et al (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60:602–616PubMedCrossRefGoogle Scholar
  14. 14.
    Fazli M, O’Connell A, Nilsson M et al (2011) The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol 82:327–341PubMedCrossRefGoogle Scholar
  15. 15.
    Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61: 131–148PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Galperin MY (2004) Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6:552–567PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Spangler C, Kaever V, Seifert R (2011) Interaction of the diguanylate cyclase YdeH of Escherichia coli with 2′, (3′)-substituted purine and pyrimidine nucleotides. J Pharmacol Exp Ther 336:234–241PubMedCrossRefGoogle Scholar
  19. 19.
    Sambanthamoorthy K, Sloup RE, Parashar V et al (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56:5202–5211PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Rahme LG, Stevens EJ, Wolfort SF et al (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902PubMedCrossRefGoogle Scholar
  21. 21.
    Massai F, Imperi F, Quattrucci S et al (2011) A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal. Biosens Bioelectron 26:3444–3449PubMedCrossRefGoogle Scholar
  22. 22.
    Antoniani D, Bocci P, Maciag A et al (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85:1095–1104PubMedCrossRefGoogle Scholar
  23. 23.
    Ohman DE, Burns RP, Iglewski BH (1980) Corneal infections in mice with toxin A and elastase mutants of Pseudomonas aeruginosa. J Infect Dis 142:547–555PubMedCrossRefGoogle Scholar
  24. 24.
    Stocchi V, Cucchiarini L, Magnani M et al (1985) Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124PubMedCrossRefGoogle Scholar
  25. 25.
    Kostick JL, Szkotnicki LT, Rogers EA et al (2011) The diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetes. Mol Microbiol 81:219–223PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hayakawa Y, Reiko N, Hirata A et al (2003) A facile synthesis of cyclic bis(3′ → 5′)diguanylic acid. Tetrahedron 59:6465–6471CrossRefGoogle Scholar
  27. 27.
    Zogaj X, Nimtz M, Rohde M et al (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of SciencesUniversità “Roma Tre”RomeItaly
  2. 2.Department of BiosciencesUniversità degli Studi di MilanoMilanItaly

Personalised recommendations