Reconstruction and Morphometric Analysis of Hippocampal Neurons from Mice Expressing Fluorescent Proteins

  • Nataliya Golovyashkina
  • Frederik Sündermann
  • Roland Brandt
  • Lidia Bakota
Part of the Neuromethods book series (NM, volume 87)


Dendritic morphology and its alterations determine the strength of the integrated signal of individual neurons. Changes in the dendritic arborization accompany neuronal development, memory formation, and neurodegenerative processes. Region-specific dendritic simplification is a key feature in Alzheimer’s disease and other neurodegenerative disorders. Here we describe a method to analyze whole-neuron morphology in brain slices prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) in different subpopulations of neurons. Complete pyramidal neurons are imaged using high-resolution confocal microscopy and analyzed after semi-automated 3D reconstruction. The approach allows evaluation of different morphological features, such as total extent of dendrites and number of branching points, as well as 3D Sholl analysis, e.g., of apical and basal dendritic subtrees of neurons from different hippocampal or cortical subregions.

Key words

Dendritic morphology Hippocampus Cortex Brain slices Laser scanning microscopy Semi-automated analysis 



The authors acknowledge the support given by the Deutsche Forschungsgemeinschaft (DFG grant BR1192/11-2) to R.B. and a Lichtenberg Fellowship of the state of Lower Saxony to F.S.


  1. 1.
    Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8(6):521–545PubMedCrossRefGoogle Scholar
  2. 2.
    Anderton BH, Callahan L, Coleman P et al (1998) Dendritic changes in Alzheimer’s disease and factors that may underlie these changes. Prog Neurobiol 55(6):595–609PubMedCrossRefGoogle Scholar
  3. 3.
    Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51PubMedCrossRefGoogle Scholar
  4. 4.
    Tackenberg C, Brandt R (2009) Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau. J Neurosci 29(46): 14439–14450PubMedCrossRefGoogle Scholar
  5. 5.
    Sündermann F, Golovyashkina N, Tackenberg C et al (2012) High-resolution imaging and evaluation of spines in organotypic hippocampal slice cultures. Methods Mol Biol 846:277–293PubMedCrossRefGoogle Scholar
  6. 6.
    Linkert M, Rueden CT, Allan C et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782, PMID: 20513764PubMedCrossRefGoogle Scholar
  7. 7.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682, PDF Supplement PMID: 22743772PubMedCrossRefGoogle Scholar
  8. 8.
    Rodriguez A, Ehlenberger D, Kelliher K et al (2003) Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods 30(1): 94–105PubMedCrossRefGoogle Scholar
  9. 9.
    Myatt DR, Nasuto SJ (2009) Three-dimensional reconstruction of neurons with neuromantic. AISB Quarterly 25:1–2Google Scholar
  10. 10.
    Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10CrossRefGoogle Scholar
  11. 11.
    Shimizu S (2004) Routs of administration. In: Hedrich H (ed) The laboratory mouse. Elsevier Academic, AmsterdamGoogle Scholar
  12. 12.
    Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nataliya Golovyashkina
    • 1
  • Frederik Sündermann
    • 1
  • Roland Brandt
    • 1
  • Lidia Bakota
    • 1
  1. 1.Department of NeurobiologyUniversity of OsnabrückOsnabrückGermany

Personalised recommendations