Predicting the Structure of Protein–Protein Complexes Using the SwarmDock Web Server

  • Mieczyslaw Torchala
  • Paul A. Bates
Part of the Methods in Molecular Biology book series (MIMB, volume 1137)


Protein–protein interactions drive many of the biological functions of the cell. Any two proteins have the potential to interact; however, whether the interactions are of biological significance is dependent on a number of complicated factors. Thus, modelling the three-dimensional structure of protein–protein complexes is still considered to be a complex endeavor. Nevertheless, many experimentalists now wish to boost their knowledge of protein–protein interactions, well beyond complexes resolved experimentally, and for them to be able to do so it is important they are able to effectively and confidently predict protein–protein interactions. The main aim of this chapter is to acquaint the reader, particularly one from a non-computational background, how to use a state-of-the-art protein docking tool. In particular, we describe here the SwarmDock Server (SDS), a web service for the flexible modelling of protein–protein complexes; this server is freely available at: Supplementary files for Case Studies are provided with the chapter and available at


SwarmDock Protein–protein complexes Protein–protein interactions Protein docking Protein structure prediction 



This work was funded by Cancer Research UK. We are grateful to Iain Moal and Raphael Chaleil for their fruitful collaborations on the subject of modelling protein–protein interactions.


  1. 1.
    Lensink MF, Mendez R, Wodak SJ (2007) Docking and scoring protein complexes: CAPRI 3rd edition. Proteins 69:704–718PubMedCrossRefGoogle Scholar
  2. 2.
    Hwang H, Vreven T, Janin J, Weng ZP (2010) Protein-protein docking benchmark version 4.0. Proteins 78:3111–3114PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Torchala M, Moal IH, Chaleil RAG, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29:807–809PubMedCrossRefGoogle Scholar
  4. 4.
    Moal IH, Bates PA (2010) SwarmDock and the use of normal modes in flexible protein-protein docking. Int J Mol Sci 11:3623–3648PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Torchala M, Moal IH, Chaleil RAG, Agius R, Bates PA (2013) A Markov-chain model description of binding funnels to enhance the ranking of docked solutions. Proteins 81:2143–2149. doi: 10.1002/prot.24369 PubMedCrossRefGoogle Scholar
  6. 6.
    Moal IH, Torchala M, Bates PA, Fernandez-Recio J (2013) The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 14:286PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. Perth, Australia, pp 1942–1948Google Scholar
  8. 8.
    Li X, Moal IH, Bates PA (2010) Detection and refinement of encounter complexes for protein-protein docking: taking account of macromolecular crowding. Proteins 78:3189–3196PubMedCrossRefGoogle Scholar
  9. 9.
    Liu S, Zhang C, Zhou H, Zhou Y (2004) A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 56:93–101PubMedCrossRefGoogle Scholar
  10. 10.
    Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6:19–30CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1615PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32(Web Server issue):W610–W614PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Tobi D (2010) Designing coarse grained-and atom based-potentials for protein-protein docking. BMC Struct Biol 10:40PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Bates PA, Kelley LA, MacCallum RM, Sternberg MJ (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins Suppl 5:39–46Google Scholar
  17. 17.
    Offman MN, Tournier AL, Bates PA (2008) Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection. BMC Struct Biol 8:34PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–28Google Scholar
  19. 19.
    Lejon S, Cramer JF, Nordberg P (2008) Structural basis for the binding of naproxen to human serum albumin in the presence of fatty acids and the GA module. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:64–69PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Monaco-Malbet S, Berthet-Colominas C, Novelli A, Battai N, Piga N, Cheynet V, Mallet F, Cusack S (2000) Mutual conformational adaptations in antigen and antibody upon complex formation between an Fab and HIV-1 capsid protein p24. Structure 8:1069–1077PubMedCrossRefGoogle Scholar
  21. 21.
    Ding J, Das K, Hsiou Y, Sarafianos SG, Clark AD Jr, Jacobo-Molina A, Tantillo C, Hughes SH, Arnold E (1998) Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. J Mol Biol 284:1095–1111PubMedCrossRefGoogle Scholar
  22. 22.
    Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins 64: 559–574PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mieczyslaw Torchala
    • 1
  • Paul A. Bates
    • 1
  1. 1.Biomolecular Modelling LaboratoryCancer Research UK London Research InstituteLondonUK

Personalised recommendations