Skip to main content

Prediction of Intrinsic Disorder in Proteins Using MFDp2

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1137))

Abstract

Intrinsically disordered proteins (IDPs) are either entirely disordered or contain disordered regions in their native state. IDPs were found to be abundant across all kingdoms of life, particularly in eukaryotes, and are implicated in numerous cellular processes. Experimental annotation of disorder lags behind the rapidly growing sizes of the protein databases and thus computational methods are used to close this gap and to investigate the disorder. MFDp2 is a novel webserver for accurate sequence-based prediction of protein disorder which also outputs well-described sequence-derived information that allows profiling the predicted disorder. We conveniently visualize sequence conservation, predicted secondary structure, relative solvent accessibility, and alignments to chains with annotated disorder. The webserver allows predictions for multiple proteins at the same time, includes help pages and tutorial, and the results can be downloaded as text-based (parsable) file. MFDp2 is freely available at http://biomine.ece.ualberta.ca/MFDp2/.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  CAS  PubMed  Google Scholar 

  2. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9 Suppl 2:S1

    Google Scholar 

  4. Peng Z, Xue B, Kurgan L, Uversky VN (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20(9):1257–1267

    Article  CAS  PubMed  Google Scholar 

  5. Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN (2012) More than just tails: intrinsic disorder in histone proteins. Mol Biosyst 8:1886–1901

    Article  CAS  PubMed  Google Scholar 

  6. Russell RB, Gibson TJ (2008) A careful disorderliness in the proteome: sites for interaction and targets for future therapies. FEBS Lett 582:1271–1275

    Article  CAS  PubMed  Google Scholar 

  7. Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10 Suppl 1:S7

    Google Scholar 

  8. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  PubMed  Google Scholar 

  9. Xue B, Mizianty MJ, Kurgan LA, Uversky VN (2012) Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 69(8):1211–1259

    Article  CAS  PubMed  Google Scholar 

  10. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    Article  CAS  PubMed  Google Scholar 

  11. Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45:10448–10460

    Article  CAS  PubMed  Google Scholar 

  12. Raychaudhuri S, Dey S, Bhattacharyya NP, Mukhopadhyay D (2009) The role of intrinsically unstructured proteins in neurodegenerative diseases. PLoS One 4:e5566

    Article  PubMed Central  PubMed  Google Scholar 

  13. Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238

    Article  CAS  Google Scholar 

  14. Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2009) Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics 10 Suppl 1:S12

    Google Scholar 

  15. Uversky VN (2008) Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 5:260–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  17. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30:137–149

    Article  CAS  PubMed  Google Scholar 

  18. Pancsa R, Tompa P (2012) Structural disorder in eukaryotes. PLoS One 7:e34687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yan J, Mizianty MJ, Filipow PL, Uversky VN, Kurgan L (2013) RAPID: fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale. Biochim Biophys Acta 1834:1671–1680

    Article  CAS  PubMed  Google Scholar 

  20. Peng Z, Mizianty MJ, Kurgan L (2013) Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins Struct Funct Bioinformatics

    Google Scholar 

  21. Mizianty MJ, Peng Z, Kurgan L (2013) MFDp2: accurate predictor of disorder in proteins by fusion of disorder probabilities, content and profiles. Intrinsically Disordered Proteins 1:13–22

    Article  Google Scholar 

  22. Deng X, Eickholt J, Cheng J (2012) A comprehensive overview of computational protein disorder prediction methods. Mol Biosyst 8:114–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Peng Z-L, Kurgan LA (2012) Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr Protein Pept Sci 13:6–18

    Article  CAS  PubMed  Google Scholar 

  24. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949

    Article  CAS  PubMed  Google Scholar 

  25. Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan LA (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26:i489–i496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mizianty MJ, Zhang T, Xue B, Zhou Y, Dunker AK, Uversky VN, Kurgan LA (2011) In-silico prediction of disorder content using hybrid sequence representation. BMC Bioinformatics 12:245

    Article  PubMed Central  PubMed  Google Scholar 

  27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN et al (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35:D786–D793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  30. Faraggi E, Xue B, Zhou Y (2009) Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins 74:847–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang K, Samudrala R (2006) Incorporating background frequency improves entropy-based residue conservation measures. BMC Bioinformatics 7:385

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  CAS  PubMed  Google Scholar 

  34. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  CAS  PubMed  Google Scholar 

  35. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    Article  CAS  PubMed  Google Scholar 

  36. Patel D, Huang SM, Baglia LA, McCance DJ (1999) The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 18:5061–5072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zimmermann H, Degenkolbe R, Bernard HU, O’Connor MJ (1999) The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 73:6209–6219

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kumar A, Zhao Y, Meng G, Zeng M, Srinivasan S, Delmolino LM, Gao Q, Dimri G, Weber GF, Wazer DE et al (2002) Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 22:5801–5812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C, Ciechanover A (1998) Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci USA 95:8058–8063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ronco LV, Karpova AY, Vidal M, Howley PM (1998) Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 12:2061–2072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kukimoto I, Aihara S, Yoshiike K, Kanda T (1998) Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance 7 protein. Biochem Biophys Res Commun 249:258–262

    Article  CAS  PubMed  Google Scholar 

  42. Srivenugopal KS, Ali-Osman F (2002) The DNA repair protein, O(6)-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 21:5940–5945

    Article  CAS  PubMed  Google Scholar 

  43. Gao Q, Kumar A, Srinivasan S, Singh L, Mukai H, Ono Y, Wazer DE, Band V (2000) PKN binds and phosphorylates human papillomavirus E6 oncoprotein. J Biol Chem 275:14824–14830

    Article  CAS  PubMed  Google Scholar 

  44. Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, Pellegrini S, Matlashewski GJ, Koromilas AE (1999) The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 18:5727–5737

    Article  CAS  PubMed  Google Scholar 

  45. Gao Q, Srinivasan S, Boyer SN, Wazer DE, Band V (1999) The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol 19:733–744

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ (2002) The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem 277:21730–21739

    Article  CAS  PubMed  Google Scholar 

  47. Thomas M, Banks L (1999) Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol 80(Pt 6):1513–1517

    CAS  PubMed  Google Scholar 

  48. Tong X, Boll W, Kirchhausen T, Howley PM (1998) Interaction of the bovine papillomavirus E6 protein with the clathrin adaptor complex AP-1. J Virol 72:476–482

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Chen JJ, Reid CE, Band V, Androphy EJ (1995) Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269:529–531

    Article  CAS  PubMed  Google Scholar 

  50. Du M, Fan X, Hong E, Chen JJ (2002) Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. Biochem Biophys Res Commun 296:962–969

    Article  CAS  PubMed  Google Scholar 

  51. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94:11612–11616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Nakagawa S, Huibregtse JM (2000) Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20:8244–8253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19:5270–5280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74:9680–9693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Sedman SA, Barbosa MS, Vass WC, Hubbert NL, Haas JA, Lowy DR, Schiller JT (1991) The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J Virol 65:4860–4866

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Morosov A, Phelps WC, Raychaudhuri P (1994) Activation of the c-fos gene by the HPV16 oncoproteins depends upon the cAMP-response element at -60. J Biol Chem 269:18434–18440

    CAS  PubMed  Google Scholar 

  57. Dey A, Atcha IA, Bagchi S (1997) HPV16 E6 oncoprotein stimulates the transforming growth factor-beta 1 promoter in fibroblasts through a specific GC-rich sequence. Virology 228:190–199

    Article  CAS  PubMed  Google Scholar 

  58. Gewin L, Galloway DA (2001) E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol 75:7198–7201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Oh ST, Kyo S, Laimins LA (2001) Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 75:5559–5566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ristriani T, Masson M, Nominé Y, Laurent C, Lefevre JF, Weiss E, Travé G (2000) HPV oncoprotein E6 is a structure-dependent DNA-binding protein that recognizes four-way junctions. J Mol Biol 296:1189–1203

    Article  CAS  PubMed  Google Scholar 

  61. Ristriani T, Nominé Y, Masson M, Weiss E, Travé G (2001) Specific recognition of four-way DNA junctions by the C-terminal zinc-binding domain of HPV oncoprotein E6. J Mol Biol 305:729–739

    Article  CAS  PubMed  Google Scholar 

  62. Li X, Coffino P (1996) High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J Virol 70:4509–4516

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Thomas MC, Chiang C-M (2005) E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 17:251–264

    Article  CAS  PubMed  Google Scholar 

  64. Cole ST, Danos O (1987) Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J Mol Biol 193:599–608

    Article  CAS  PubMed  Google Scholar 

  65. Pim D, Storey A, Thomas M, Massimi P, Banks L (1994) Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene 9:1869–1876

    CAS  PubMed  Google Scholar 

  66. Thomas M, Pim D, Banks L (1999) The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 18:7690–7700

    Article  CAS  PubMed  Google Scholar 

  67. Nominé Y, Ristriani T, Laurent C, Lefèvre JF, Weiss E, Travé G (2001) Formation of soluble inclusion bodies by hpv e6 oncoprotein fused to maltose-binding protein. Protein Expr Purif 23:22–32

    Article  PubMed  Google Scholar 

  68. Nominé Y, Charbonnier S, Ristriani T, Stier G, Masson M, Cavusoglu N, Van Dorsselaer A, Weiss E, Kieffer B, Travé G (2003) Domain substructure of HPV E6 oncoprotein: biophysical characterization of the E6 C-terminal DNA-binding domain. Biochemistry 42:4909–4917

    Article  PubMed  Google Scholar 

  69. Zanier K, ould M’hamed ould Sidi A, Boulade-Ladame C, Rybin V, Chappelle A, Atkinson A, Kieffer B, Travé G (2012) Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53. Structure 20:604–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Uversky VN, Roman A, Oldfield CJ, Dunker AK (2006) Protein intrinsic disorder and human papillomaviruses: increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. J Proteome Res 5:1829–1842

    Article  CAS  PubMed  Google Scholar 

  71. Xue B, Ganti K, Rabionet A, Banks L, Uversky VN (2013) Disordered interactome of human papillomavirus. Curr Pharm Des

    Google Scholar 

  72. Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133:403–414

    Article  CAS  PubMed  Google Scholar 

  73. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  CAS  PubMed  Google Scholar 

  74. Zhang XC, Piccini A, Myers MP, Van Aelst L, Tonks NK (2012) Functional analysis of the protein phosphatase activity of PTEN. Biochem J 444:457–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128:157–170

    Article  CAS  PubMed  Google Scholar 

  76. Waite KA, Eng C (2002) Protean PTEN: form and function. Am J Hum Genet 70:829–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 96:1563–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  79. Fraser MM, Zhu X, Kwon C-H, Uhlmann EJ, Gutmann DH, Baker SJ (2004) Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res 64:7773–7779

    Article  CAS  PubMed  Google Scholar 

  80. Das S, Dixon JE, Cho W (2003) Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci USA 100:7491–7496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP (2004) The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 379:301–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334

    Article  CAS  PubMed  Google Scholar 

  83. Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN (2009) A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci USA 106:480–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20:5010–5018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Ross AH, Gericke A (2009) Phosphorylation keeps PTEN phosphatase closed for business. Proc Natl Acad Sci USA 106:1297–1298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Dissertation fellowship awarded by the University of Alberta to M.J.M. and by the Discovery grant from the Natural Sciences and Engineering Research Council of Canada to L.K.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mizianty, M.J., Uversky, V., Kurgan, L. (2014). Prediction of Intrinsic Disorder in Proteins Using MFDp2. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 1137. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0366-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0366-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0365-8

  • Online ISBN: 978-1-4939-0366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics