Skip to main content

Insights into Secondary and Tertiary Interactions of Dengue Virus RNA by SHAPE

  • Protocol
  • First Online:
Dengue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1138))

Abstract

Dengue virus (DENV) is a single-stranded positive-sense RNA virus belonging to the Flaviviridae family. The DENV RNA genome contains multiple cis-acting elements that continue to unravel their essential role in managing viral molecular processes. Attempts have been made to predict the secondary structure of DENV RNA using a variety of computational tools. Nevertheless, a greater degree of accuracy is achieved when these methods are complemented with structure probing experimentation. This chapter outlines detailed methodology for the structural study of DENV subgenomic minigenome RNA by applying high-throughput selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). High-throughput SHAPE combines a novel chemical probing technology with reverse transcription, capillary electrophoresis, and secondary structure prediction software to rapidly and reproducibly determine the structure of RNAs from several hundred to several thousand nucleotides at single-nucleotide resolution. This methodology investigates local structure for all positions in a sequence-independent manner and as such it is particularly useful in predicting RNA secondary and tertiary interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11(3):480–496

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Filomatori CV, Iglesias NG, Villordo SM, Alvarez DE, Gamarnik AV (2011) RNA sequences and structures required for the recruitment and activity of the dengue virus polymerase. J Biol Chem 286(9):6929–6939. doi:10.1074/jbc.M110.162289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Manzano M, Reichert ED, Polo S, Falgout B, Kasprzak W, Shapiro BA, Padmanabhan R (2011) Identification of cis-acting elements in the 3′-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 286(25):22521–22534. doi:10.1074/jbc.M111.234302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wei Y, Qin C, Jiang T, Li X, Zhao H, Liu Z, Deng Y, Liu R, Chen S, Yu M, Qin E (2009) Translational regulation by the 3′ untranslated region of the dengue type 2 virus genome. Am J Trop Med Hyg 81(5):817–824. doi:10.4269/ajtmh.2009.08-0595

    Article  CAS  PubMed  Google Scholar 

  5. Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA–RNA interactions circularize the dengue virus genome. J Virol 79(11):6631–6643. doi:10.1128/JVI.79.11.6631-6643.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Villordo SM, Gamarnik AV (2009) Genome cyclization as strategy for flavivirus RNA replication. Virus Res 139(2):230–239. doi:10.1016/j.virusres.2008.07.016

    Article  CAS  PubMed  Google Scholar 

  7. You S, Padmanabhan R (1999) A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274(47):33714–33722

    Article  CAS  PubMed  Google Scholar 

  8. Chiu WW, Kinney RM, Dreher TW (2005) Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79(13):8303–8315. doi:10.1128/JVI.79.13.8303-8315.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ackermann M, Padmanabhan R (2001) De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276(43):39926–39937. doi:10.1074/jbc.M104248200

    Article  CAS  PubMed  Google Scholar 

  10. Nomaguchi M, Ackermann M, Yon C, You S, Padmanabhan R (2003) De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J Virol 77(16):8831–8842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127(12):4223–4231. doi:10.1021/ja043822v

    Article  CAS  PubMed  Google Scholar 

  12. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protocols 1(3):1610–1616. doi:10.1038/nprot.2006.249

    Article  CAS  Google Scholar 

  13. Sztuba-Solinska J, Le Grice SF (2012) Probing retroviral and retrotransposon genome structures: the “SHAPE” of things to come. Mol Biol Int 2012:530754. doi:10.1155/2012/530754

    Article  PubMed Central  PubMed  Google Scholar 

  14. Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, Giddings MC, Weeks KM (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6(4):e96. doi:10.1371/journal.pbio.0060096

    Article  PubMed Central  PubMed  Google Scholar 

  15. Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC (2008) ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14(10):1979–1990. doi:10.1261/rna.1166808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129. doi:10.1186/1471-2105-11-129

    Article  PubMed Central  PubMed  Google Scholar 

  17. Pang PS, Elazar M, Pham EA, Glenn JS (2011) Simplified RNA secondary structure mapping by automation of SHAPE data analysis. Nucleic Acids Res 39(22):e151. doi:10.1093/nar/gkr773

    Article  PubMed Central  PubMed  Google Scholar 

  18. Legiewicz M, Badorrek CS, Turner KB, Fabris D, Hamm TE, Rekosh D, Hammarskjold ML, Le Grice SF (2008) Resistance to RevM10 inhibition reflects a conformational switch in the HIV-1 Rev response element. Proc Natl Acad Sci U S A 105(38):14365–14370. doi:10.1073/pnas.0804461105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Legiewicz M, Zolotukhin AS, Pilkington GR, Purzycka KJ, Mitchell M, Uranishi H, Bear J, Pavlakis GN, Le Grice SF, Felber BK (2010) The RNA transport element of the murine musD retrotransposon requires long-range intramolecular interactions for function. J Biol Chem 285(53):42097–42104. doi:10.1074/jbc.M110.182840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. McGinnis JL, Duncan CD, Weeks KM (2009) High-throughput SHAPE and hydroxyl radical analysis of RNA structure and ribonucleoprotein assembly. Methods Enzymol 468:67–89. doi:10.1016/S0076-6879(09)68004-6

    Article  CAS  PubMed  Google Scholar 

  21. Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A (2008) High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36(11):e63. doi:10.1093/nar/gkn267

    Article  PubMed Central  PubMed  Google Scholar 

  22. Byun Y, Han K (2006) PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures. Nucleic Acids Res 34(Web Server issue):W416–W422. doi:10.1093/nar/gkl210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Darty K, Denise A, Ponty Y (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25(15):1974–1975. doi:10.1093/bioinformatics/btp250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Das R, Laederach A, Pearlman SM, Herschlag D, Altman RB (2005) SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11(3):344–354. doi:10.1261/rna.7214405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart F. J. Le Grice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sztuba-Solinska, J., Le Grice, S.F.J. (2014). Insights into Secondary and Tertiary Interactions of Dengue Virus RNA by SHAPE. In: Padmanabhan, R., Vasudevan, S. (eds) Dengue. Methods in Molecular Biology, vol 1138. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0348-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0348-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0347-4

  • Online ISBN: 978-1-4939-0348-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics