Skip to main content

Monitoring the Frequency and Function of Regulatory T Cells and Summary of the Approaches Currently Used to Inhibit Regulatory T Cells in Cancer Patients

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1139))

Abstract

Regulatory T cells (Treg) are a subset of T lymphocytes that in humans represent less than the 10 % of circulating CD4+ T cells. Treg are specialized in the inhibition of the immune responses and play a crucial role in the maintenance of immunological tolerance. Several lines of evidence clearly documented the role of Treg in restraining antitumor immune responses. For this reason, antitumor immunotherapy approaches have been recently associated with drug treatments aimed at depleting Treg or blocking their functions. A summary of the currently used in vivo approaches to limit Treg expansion in cancer patients is here provided.

A comprehensive phenotypic and functional monitoring of Treg is crucial for the precise assessment of the effects that these different drug treatments exert on Treg. In this chapter, we will provide guidelines for an accurate ex vivo identification of human Treg. Due to the phenotypic and functional heterogeneity, intrinsic plasticity, and the lack of a unique marker exclusively expressed by human Treg, the clear-cut identification of this T cell subset requires the expert usage of multiparametric flow cytometry analysis (FACS). In this view, a combination of phenotypic and functional assessment of Treg is mandatory. In this chapter, we will describe the most reliable methods to identify and monitor the modulation of human Treg in patients undergoing immunological or drug-based treatments. Protocols to measure ex vivo the suppressive functions of Treg are also provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ghiringhelli F et al (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  CAS  PubMed  Google Scholar 

  2. Lutsiak M et al (2005) Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868

    Article  CAS  PubMed  Google Scholar 

  3. Ghiringhelli F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    Article  CAS  PubMed  Google Scholar 

  4. Slingluff CL et al (2011) Randomized multicenter trial of the effects of melanoma-associated helper peptides and cyclophosphamide on the immunogenicity of a multipeptide melanoma vaccine. J Clin Oncol 29:2924–2932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ge Y et al (2012) Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol Immunother 61:353–362

    Article  CAS  PubMed  Google Scholar 

  6. Jacobs JF et al (2010) Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 16:5067–5078

    Article  CAS  PubMed  Google Scholar 

  7. Rech AJ, Vonderheide RH (2009) Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci 1174:99–106

    Article  CAS  PubMed  Google Scholar 

  8. Mahnke K et al (2007) Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120:2723–2733

    Article  CAS  PubMed  Google Scholar 

  9. Attia P et al (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (denileukin diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28:582–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Morse MA et al (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112:610–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dannull J et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Powell DJ et al (2007) Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 179:4919–4928

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Powell DJ et al (2008) Partial reduction of human FOXP3+ CD4 T cells in vivo after CD25-directed recombinant immunotoxin administration. J Immunother 31:189–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Menard C et al (2008) Ctla-4 blockade confers lymphocyte resistance to regulatory T-cells in advanced melanoma: surrogate marker of efficacy of tremelimumab? Clin Cancer Res 14:5242–5249

    Article  CAS  PubMed  Google Scholar 

  15. Ralph C et al (2010) Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res 16:1662–1672

    Article  CAS  PubMed  Google Scholar 

  16. Finke JH et al (2008) Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res 14:6674–6682

    Article  CAS  PubMed  Google Scholar 

  17. Adotevi O et al (2010) A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J Immunother 33:991–998

    Article  CAS  PubMed  Google Scholar 

  18. Desar I et al (2011) Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int J Cancer 129:507–512

    Article  CAS  PubMed  Google Scholar 

  19. Balachandran VP et al (2011) Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of ido. Nat Med 17:1094–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jordan JT et al (2008) Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57:123–131

    Article  CAS  PubMed  Google Scholar 

  21. Baecher-Allan C et al (2005) Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4+ CD25+ T cells. Clin Immunol 115:10–18

    Article  CAS  PubMed  Google Scholar 

  22. Liu W et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Allan SE et al (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 19:345–354

    Article  CAS  PubMed  Google Scholar 

  24. Miyara M et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  CAS  PubMed  Google Scholar 

  25. Tosello V et al (2008) Differential expression of CCR7 defines two distinct subsets of human memory CD4+CD25+ Tregs. Clin Immunol 126:291–302

    Article  CAS  PubMed  Google Scholar 

  26. Baecher-Allan C et al (2006) MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol 176:4622–4631

    CAS  PubMed  Google Scholar 

  27. Ito T et al (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28:870–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Solstad T et al (2011) CD147 (Basigin/Emmprin) identifies FoxP3 + CD45RO+CTLA4+-activated human regulatory T cells. Blood 118:5141–5151

    Article  CAS  PubMed  Google Scholar 

  29. Borsellino et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232

    Article  CAS  PubMed  Google Scholar 

  30. Tran DQ et al (2009) GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 106:13445–13450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Camisaschi C et al (2010) LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J Immunol 184:6545–6551

    Article  CAS  PubMed  Google Scholar 

  32. Bovenschen HJ et al (2011) Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol 131:1853–1860

    Article  CAS  PubMed  Google Scholar 

  33. Raffin C et al (2011) Ex vivo IL-1 receptor type I expression in human CD4+ T cells identifies an early intermediate in the differentiation of Th17 from FOXP3+ naive regulatory T cells. J Immunol 187:5196–5202

    Article  CAS  PubMed  Google Scholar 

  34. Dominguez-Villar M et al (2011) Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 17:673–675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Baron U et al (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 37:2378–2389

    Article  CAS  PubMed  Google Scholar 

  36. Wieczorek G et al (2009) Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res 69:599–608

    Article  CAS  PubMed  Google Scholar 

  37. de Vries IJ et al (2011) Frequency of circulating Tregs with demethylated FOXP3 intron 1 in melanoma patients receiving tumor vaccines and potentially Treg-depleting agents. Clin Cancer Res 17:841–848

    Article  PubMed  Google Scholar 

  38. Lucas S et al (2012) Demethylation of the FOXP3 gene in human melanoma cells precludes the use of this epigenetic mark for quantification of Treg in unseparated melanoma samples. Int J Cancer 130:1960–1966

    Article  CAS  PubMed  Google Scholar 

  39. Zheng SG et al (2004) Natural and induced CD4+CD25+ cells educate CD4+CD25 cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172:5213–5221

    CAS  PubMed  Google Scholar 

  40. Levings MK et al (2001) Human CD25(+)CD4(+) T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 193:1295–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Camisaschi, C., Tazzari, M., Rivoltini, L., Castelli, C. (2014). Monitoring the Frequency and Function of Regulatory T Cells and Summary of the Approaches Currently Used to Inhibit Regulatory T Cells in Cancer Patients. In: Lawman, M., Lawman, P. (eds) Cancer Vaccines. Methods in Molecular Biology, vol 1139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0345-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0345-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0344-3

  • Online ISBN: 978-1-4939-0345-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics