Skip to main content

Single-Step Antigen Loading and Maturation of Dendritic Cells Through mRNA Electroporation of a Tumor-Associated Antigen and a TriMix of Costimulatory Molecules

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1139))

Abstract

Dendritic cells (DC) are key players in several types of cancer vaccines. Large numbers of DC can easily be generated in closed systems from the monocyte fraction of the peripheral blood. They are the professional antigen-presenting cells, and electroporation of mRNA-encoding tumor antigens is a very efficient and a relatively simple way to load the DC with antigen. The co-electroporation of a tumor antigen of choice and the combination of 3 costimulatory molecules, including CD70, caTLR4, and CD40L (TriMix-DC), leads to fully potent antigen-presenting DC able to generate a broad immune response.

Here we describe the in vitro transcription of the mRNA and the subsequent generation and electroporation of autologous DC used for the treatment of melanoma patients.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schnurr M et al (2005) Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood 105:2465–2472

    Article  CAS  PubMed  Google Scholar 

  2. Hasegawa K et al (2006) In vitro stimulation of CD8 and CD4 T cells by dendritic cells loaded with a complex of cholesterol-bearing hydrophobized pullulan and NY-ESO-1 protein: identification of a new HLA-DR15-binding CD4 T-cell epitope. Clin Cancer Res 12:1921–1927

    Article  CAS  PubMed  Google Scholar 

  3. Keilholz U et al (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113:6541–6548

    Article  CAS  PubMed  Google Scholar 

  4. Svane IM et al (2007) Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol Immunther 56:1485–1499

    Article  CAS  Google Scholar 

  5. Van Nuffel AM et al (2012) Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4(+) and CD8(+) T cells in melanoma patients. Mol Ther 20:1063–1074

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wilgenhof S et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34:448–456

    Article  CAS  PubMed  Google Scholar 

  7. Henken FE et al (2012) Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7. Vaccine 30:4259–4266

    Article  CAS  PubMed  Google Scholar 

  8. Himoudi N et al (2012) Lack of T-cell responses following autologous tumour lysate pulsed dendritic cell vaccination, in patients with relapsed osteosarcoma. Clin Transl Oncol 14:271–279

    Article  CAS  PubMed  Google Scholar 

  9. Kalady MF et al (2004) Dendritic cells pulsed with pancreatic cancer total tumor RNA generate specific antipancreatic cancer T cells. J Gastrointest Surg 8:175–181

    Article  PubMed  Google Scholar 

  10. Win SJ et al (2012) Enhancing the immunogenicity of tumour lysate-loaded dendritic cell vaccines by conjugation to virus-like particles. Br J Cancer 106:92–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jonuleit H et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142

    Article  CAS  PubMed  Google Scholar 

  12. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  CAS  PubMed  Google Scholar 

  13. Van Nuffel AM et al (2012) Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient. Cancer Immunol Immunother 61:1033–1043

    Article  PubMed  Google Scholar 

  14. Reiser M et al (2011) The immunodominant CD8 T cell response to the human cytomegalovirus tegument phosphoprotein pp 65(495–503) epitope critically depends on CD4 T cell help in vaccinated HLA-A*0201 transgenic mice. J Immunol 187:2172–2180

    Article  CAS  PubMed  Google Scholar 

  15. De Veerman M et al (1999) Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity. J Immunol 162:144–151

    PubMed  Google Scholar 

  16. Gao FG et al (2002) Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res 62:6438–6441

    CAS  PubMed  Google Scholar 

  17. Bevan MJ (2004) Helping the CD8(+) T-cell response. Nat Rev Immunol 4:595–602

    Article  CAS  PubMed  Google Scholar 

  18. Bonehill A et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172:6649–6657

    CAS  PubMed  Google Scholar 

  19. Fath S et al (2011) Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 6:e17596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Samorski R et al (2006) Codon optimized expression of HPV 16 E6 renders target cells susceptible to E6-specific CTL recognition. Immunol Lett 107:41–49

    Article  CAS  PubMed  Google Scholar 

  21. Bonehill A et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375

    Article  CAS  PubMed  Google Scholar 

  22. Bonehill A et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180

    Article  CAS  PubMed  Google Scholar 

  23. Mullins DW et al (2003) Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med 198:1023–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wilgenhof S et al (2013) Phase 1B study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated melanoma patients. Ann Oncol 24(10):2686–2693

    Article  CAS  PubMed  Google Scholar 

  25. Holtkamp S et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017

    Article  CAS  PubMed  Google Scholar 

  26. Cisco RM et al (2004) Induction of human dendritic cell maturation using transfection with RNA encoding a dominant positive toll-like receptor 4. J Immunol 172:7162–7168

    CAS  PubMed  Google Scholar 

  27. Van Nuffel AM et al (2012) Epitope and HLA-type independent monitoring of antigen-specific T-cells after treatment with dendritic cells presenting full-length tumor antigens. J Immunol Methods 377:23–36

    Article  PubMed  Google Scholar 

  28. Wolfl M et al (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110:201–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Betts MR et al (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281:65–78

    Article  CAS  PubMed  Google Scholar 

  30. Tuyaerts S et al (2002) Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods 264:135–151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TriMix-DC are the topic of a current patent application (WO2009/034172). A. B. and K. T. are mentioned as inventors of this application. None of the authors involved in this study receives any form of support or remuneration related to this platform.

This work was supported by grants from the Interuniversity Attraction Poles Program–Belgian State–Belgian Science Policy, the National Cancer Plan of the Federal Ministry of Health, the Stichting tegen Kanker, the Vlaamse Liga tegen Kanker, an Integrated Project and a Network of Excellence sponsored by the EU FP-6, an IWT-TBM program, the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO-Vlaanderen), and the Willy Gepts Wetenschappelijk Fonds of the UZ Brussel. S. W. is a Ph.D. fellow and A. B. is a postdoctoral fellow of the FWO-Vlaanderen.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Benteyn, D., Van Nuffel, A.M.T., Wilgenhof, S., Bonehill, A. (2014). Single-Step Antigen Loading and Maturation of Dendritic Cells Through mRNA Electroporation of a Tumor-Associated Antigen and a TriMix of Costimulatory Molecules. In: Lawman, M., Lawman, P. (eds) Cancer Vaccines. Methods in Molecular Biology, vol 1139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0345-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0345-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0344-3

  • Online ISBN: 978-1-4939-0345-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics