Systemic Lupus Erythematosus pp 193-199

Part of the Methods in Molecular Biology book series (MIMB, volume 1134) | Cite as

Measurement of Malondialdehyde, Glutathione, and Glutathione Peroxidase in SLE Patients

  • Tamer A. Gheita
  • Sanaa A. Kenawy
Protocol

Abstract

Oxidative stress contributes to chronic inflammation of tissues and plays a central role in immunomodulation, which may lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and antiphospholipid syndrome. Markers of oxidative damage include malondialdehyde (MDA), antioxidant scavengers as glutathione (GSH), and glutathione peroxidase (GSH Px), which all correlate well with SLE disease activity. Amelioration of some clinical manifestations of SLE may be expected by targeting lipid peroxidation with dietary or pharmacological antioxidants.

Here, we describe the detection of the key players of oxidant/antioxidant imbalance in SLE.

Keywords

Systemic lupus erythematosus (SLE) Oxidative stress Malondialdehyde (MDA) Glutathione (GSH) Glutathione peroxidase (GSH Px) 

References

  1. 1.
    Perl A (2009) Emerging new pathways of pathogenesis and targets for treatment in systemic lupus erythematosus and Sjögren’s syndrome. Curr Opin Rheumatol 21:443–447PubMedCrossRefGoogle Scholar
  2. 2.
    Sheikh Z, Ahmad R, Sheikh N, Ali R (2007) Enhanced recognition of reactive oxygen species damaged human serum albumin by circulating systemic lupus erythematosus autoantibodies. Autoimmunity 40:512–520PubMedCrossRefGoogle Scholar
  3. 3.
    Hassan SZ, Gheita TA, Kenawy SA, Fahim AT, El-Sorougy IM, Abdou MS (2011) Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity. Int J Rheum Dis 14(4):325–331PubMedCrossRefGoogle Scholar
  4. 4.
    Mansour RB, Lassoued S, Gargouri B, El Gaid A, Attia H, Fakhfakh F (2008) Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid arthritis and systemic lupus erythematosus. Scand J Rheumatol 37:103–108PubMedCrossRefGoogle Scholar
  5. 5.
    Wang G, Pierangeli SS, Papalardo E, Ansari GA, Khan MF (2010) Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum 62:2064–2072PubMedCentralPubMedGoogle Scholar
  6. 6.
    Ben Mansour R, Lassoued S, Elgaied A, Haddouk S, Marzouk S, Bahloul Z et al (2010) Enhanced reactivity to malondialdehyde-modified proteins by systemic lupus erythematosus autoantibodies. Scand J Rheumatol 39:247–253PubMedCrossRefGoogle Scholar
  7. 7.
    Tewthanom K, Janwityanuchit S, Totemchockchyakarn K, Panomvana D (2008) Correlation of lipid peroxidation and glutathione levels with severity of systemic lupus erythematosus: a pilot study from single center. J Pharm Pharm Sci 11:30–34PubMedGoogle Scholar
  8. 8.
    Chung CP, Titova D, Oeser A, Randels M, Avalos I, Milne GL et al (2009) Oxidative stress in fibromyalgia and its relationship to symptoms. Clin Rheumatol 28:435–438PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Coaccioli S, Panaccione A, Biondi R, Sabatini C, Landucci P, Del Giorno R et al (2009) Evaluation of oxidative stress in rheumatoid and psoriatic arthritis and psoriasis. Clin Ter 160:467–472PubMedGoogle Scholar
  10. 10.
    Costenbader KH, Kang JH, Karlson EW (2010) Antioxidant intake and risks of rheumatoid arthritis and systemic lupus erythematosus in women. Am J Epidemiol 172:205–216PubMedCrossRefGoogle Scholar
  11. 11.
    Filippin LI, Vercelino R, Marroni NP, Xavier RM (2008) Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 152:415–422PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissue by thiobarbituric acid test. Anal Biochem 86: 271–278PubMedCrossRefGoogle Scholar
  13. 13.
    Beutler E, Duron O, Kelley BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888PubMedGoogle Scholar
  14. 14.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158PubMedGoogle Scholar
  15. 15.
    Shah D, Kiran R, Wanchu A, Bhatnagar A (2010) Oxidative stress in systemic lupus erythematosus: relationship to Th1 cytokine and disease activity. Immunol Lett 129:7–12PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang Q, Ye DQ, Chen GP, Zheng Y (2010) Oxidative protein damage and antioxidant status in systemic lupus erythematosus. Clin Exp Dermatol 35:287–294PubMedCrossRefGoogle Scholar
  17. 17.
    Gergely P Jr, Grossman C, Niland B, Puskas F, Neupane H, Allam F et al (2002) Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 46:175–190PubMedCrossRefGoogle Scholar
  18. 18.
    Morgan PE, Sturgess AD, Davies MJ (2009) Evidence for chronically elevated serum protein oxidation in systemic lupus erythematosus patients. Free Radic Res 43:117–127PubMedCrossRefGoogle Scholar
  19. 19.
    Huang WN, Tso TK, Huang HY (2007) Enhanced oxidative status but not corresponding elevated antioxidative status by anticardiolipin antibody and disease activity in patients with systemic lupus erythematosus. Rheumatol Int 27:453–458PubMedCrossRefGoogle Scholar
  20. 20.
    Morgan PE, Sturgess AD, Hennessy A, Davies MJ (2007) Serum protein oxidation and apolipoprotein CIII levels in people with systemic lupus erythematosus with and without nephritis. Free Radic Res 41:1301–1312PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Tamer A. Gheita
    • 1
  • Sanaa A. Kenawy
    • 1
  1. 1.Rheumatology and Clinical Immunology Department, Faculty of MedicineCairo UniversityCairoEgypt

Personalised recommendations