Skip to main content

Fluorescent Angiogenesis Models Using Gelfoam® Implanted in Transgenic Mice Expressing Fluorescent Proteins

  • Protocol
Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

Fidler’s group described an in vivo angiogenesis assay utilizing Gelfoam® sponges impregnated with agarose and proangiogenic factors. Vessels were detected by staining with fluorescent antibodies against CD31. We showed that Gelfoam® implanted in transgenic mice expressing the nestin promoter-driven green fluorescent protein (ND-GFP mice) was rapidly vascularized with ND-GFP-expressing nascent blood vessels. Angiogenesis in the Gelfoam® was quantified by measuring the total length of ND-GFP-expressing nascent blood vessels in a skin flap by in vivo fluorescence microscopy imaging. The ND-GFP-expressing nascent blood vessels formed a network on the surface of the basic fibroblast growth factor (bFGF)-treated Gelfoam®. We then developed a color-coded imaging model that can visualize the interaction between αv integrin linked to green fluorescent protein (GFP) in osteosarcoma cells and blood vessels in Gelfoam® vascularized after implantation in red fluorescent protein (RFP) transgenic nude mice. The implanted Gelfoam® became highly vascularized with RFP-expressing vessels in 14 days. 143B osteosarcoma cells expressing αv integrin-GFP were injected into the Gelfoam® after transplantation of Gelfoam®. After cancer cell injection, cancer cells interacting with blood vessels were observed in the Gelfoam® by color-coded confocal microscopy through the skin flap window. We developed another color-coded Gelfoam®-based imaging model that can visualize the anastomosis between blood vessels. RFP-expressing vessels in vascularized Gelfoam®, previously transplanted into RFP transgenic mice, were re-transplanted into ND-GFP mice. Skin flaps were made and anastomosis between the GFP-expressing nascent blood vessels of ND-GFP transgenic nude mice and RFP blood vessels in the transplanted Gelfoam® could be imaged. Our results demonstrate that the Gelfoam® in vivo angiogenesis model in combination with fluorescent protein labeling of blood vessels is a powerful system for use in the discovery and evaluation of agents influencing vascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  3. Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for long term cultivation of chicken embryos. Dev Biol 41:391–394

    Article  CAS  PubMed  Google Scholar 

  4. Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1378

    Article  CAS  PubMed  Google Scholar 

  5. Miller JW, Stinson WG, Folkman J (1993) Regression of experimental iris neovascularization with systemic alpha-interferon. Ophthalmology 100:9–14

    Article  CAS  PubMed  Google Scholar 

  6. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528

    CAS  PubMed  Google Scholar 

  7. Alessandri G, Raju K, Gullino PM (1983) Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo. Cancer Res 43:1790–1797

    CAS  PubMed  Google Scholar 

  8. Deutsch TA, Hughes WF (1979) Suppressive effects of indomethacin on thermally, induced neovascularization of rabbit corneas. Am J Ophthalmol 87:536–540

    Article  CAS  PubMed  Google Scholar 

  9. Korey M, Peyman GA, Berkowitz R (1977) The effect of hypertonic ointments on corneal alkali burns. Ann Ophthalmol 9:1383–1387

    CAS  PubMed  Google Scholar 

  10. Mahoney JM, Waterbury LD (1985) Drug effects on the neovascularization response to silver nitrate cauterization of the rat cornea. Curr Eye Res 4:531–535

    Article  CAS  PubMed  Google Scholar 

  11. Li WW, Grayson G, Folkman J, D’Amore PA (1991) Sustained-release endotoxin. A model for inducing corneal neovascularization. Invest Ophthalmol Vis Sci 32:2906–2911

    CAS  PubMed  Google Scholar 

  12. Epstein RJ, Hendricks RL, Stulting RD (1990) Interleukin-2 induces corneal neovascularization in A/J mice. Cornea 9:318–323

    Article  CAS  PubMed  Google Scholar 

  13. McCarty MF, Baker CH, Bucana CD, Fidler IJ (2002) Quantitative and qualitative in vivo angiogenesis assay. Int J Oncol 21:5–10

    CAS  PubMed  Google Scholar 

  14. Amoh Y, Li L, Katsuoka K, Bouvet M, Hoffman RM (2007) GFP-expressing vascularization of Gelfoam® as a rapid in vivo assay of angiogenesis stimulators and inhibitors. Biotechniques 42:294–298

    Article  CAS  PubMed  Google Scholar 

  15. Uehara F, Tome Y, Yano S, Miwa S, Mii S, Hiroshima Y, Bouvet M, Maehara H, Kanaya F, Hoffman RM (2013) A color-coded imaging model of the interaction of αv integrin-GFP expressed in osteosarcoma cells and RFP expressing blood vessels in Gelfoam® vascularized in vivo. Anticancer Res 33:1361–1366

    CAS  PubMed  Google Scholar 

  16. Uehara F, Tome Y, Reynoso J, Mii S, Yano S, Miwa S, Bouvet M, Maehara H, Kanaya F, Hoffman RM (2013) Color-coded imaging of spontaneous vessel anastomosis in vivo. Anticancer Res 33(8):3041–3045

    CAS  PubMed  Google Scholar 

  17. Tome Y, Sugimoto N, Yano S, Momiyama M, Mii S, Maehara H, Bouvet M, Tsuchiya H, Kanaya F, Hoffman RM (2013) Real-time imaging of αv integrin molecular dynamics in osteosarcoma cells in vitro and in vivo. Anticancer Res 33(8):3021–3025

    CAS  PubMed  Google Scholar 

  18. Uchugonova A, Zhao M, Weinigel M, Zhang Y, Bouvet M, Hoffman RM, Koenig K (2013) Multiphoton tomography visualizes collagen fibers in the tumor microenvironment that maintain cancer-cell anchorage and shape. J Cell Biochem 114:99–102

    Article  CAS  PubMed  Google Scholar 

  19. Amoh Y, Yang M, Li L, Reynoso J, Bouvet M, Moossa AR, Katsuoka K, Hoffman RM (2005) Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res 65:5352–5357

    Article  CAS  PubMed  Google Scholar 

  20. Yang M, Reynoso J, Bouvet M, Hoffman RM (2009) A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment. J Cell Biochem 106:279–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yang M, Baranov E, Wang J-W, Jiang P, Wang X, Sun F-X, Bouvet M, Moossa AR, Penman S, Hoffman RM (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci U S A 99:3824–3829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276

    Article  CAS  PubMed  Google Scholar 

  23. Ritsma L, Steller EJ, Beerling E, Loomans CJ, Zomer A, Gerlach C, Vrisekoop N, Seinstra D, van Gurp L, Schäfer R, Raats DA, de Graaff A, Schumacher TN, de Koning EJ, Rinkes IH, Kranenburg O, van Rheenen J (2012) Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci Transl Med 4:158ra145

    Article  PubMed  Google Scholar 

  24. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806

    Article  CAS  PubMed  Google Scholar 

  25. Hoffman RM (ed) (2012) In vivo cellular imaging using fluorescent proteins: methods and protocols. In: Walker JM (series ed) Methods in molecular biology, vol 872. Humana Press, New York

    Google Scholar 

  26. Kocher B, Piwnica-Worms D (2013) Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov 3:616–629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hoffman, R.M. (2014). Fluorescent Angiogenesis Models Using Gelfoam® Implanted in Transgenic Mice Expressing Fluorescent Proteins. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics