Skip to main content

Examining Cerebral Angiogenesis in Response to Physical Exercise

  • Protocol
Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

Capillary growth and expansion (angiogenesis) is a prerequisite for many forms of neural and behavioral plasticity. It is commonly observed in both brain and muscle of aerobically exercising animals. As such, several histological methods have been used to quantify capillary density, including perfusion with India ink, various Nissl stains, and immunohistochemistry. In this chapter, we will describe these histological procedures and describe the stereological analysis used to quantify vessel growth in response to aerobic exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hillman C, Motl R, Pontifex M et al (2006) Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol 25(6):678–687. doi:10.1037/0278-6133.25.6.678

    Article  PubMed  Google Scholar 

  2. Hillman CH, Snook CM, Jerome GJ (2003) Acute cardiovascular exercise and executive control function. Int J Psychophysiol 48:307–314. doi:10.1016/S0167 8760(03)00080-1

    Article  PubMed  Google Scholar 

  3. Winter B, Breitenstein C, Mooren F et al (2007) High impact running improves learning. Neurobiol Learn Mem 87:597–609. doi:10.1016/j.nlm.2006.11.003

    Article  PubMed  Google Scholar 

  4. Kim S, Ko I, Kim B et al (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45:357–365. doi:10.1016/j.exger.2010.02.005

    Article  PubMed  Google Scholar 

  5. Uysal N, Tugyan K, Kayatekin B et al (2005) The effects of regular exercise in adolescent period on hippocampal neuron density, apoptosis and spatial memory. Neurosci Lett 383:241–245. doi:10.1016/j.neulet.2005.04.054

    Article  CAS  PubMed  Google Scholar 

  6. Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590. doi:10.1111/j.1460- 9568.2004.03720.x

    Article  PubMed  Google Scholar 

  7. Larson E, Wang L, Bowen J et al (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81

    Article  PubMed  Google Scholar 

  8. van Praag H, Shubert T, Zhao C et al (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25(38):8680–8685. doi:10.1523/jneurosci.173105.2005

    Article  PubMed Central  PubMed  Google Scholar 

  9. Devine J, Zafonte R (2009) Physical exercise and cognitive recovery in acquired brain injury: a review of the literature. PM R 1:560–575. doi:10.1016/j.pmrj.2009.03.015

    Article  PubMed  Google Scholar 

  10. Grealy M, Johnson DA, Rushton SK (1999) Improving cognitive function after brain injury: the use of exercise and virtual reality. Arch Phys Med Rehabil 80:661–667

    Article  CAS  PubMed  Google Scholar 

  11. Griesbach G, Hovda D, Gomez-Pinilla F (2009) Exercise-induced improvement in cognitive performance after traumatic brain-injury in rats is dependent upon BDNF activation. Brain Res 1288:105–115. doi:10.1016/j.brainres.2009.06.045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kluding P, Tseng B, Billinger S (2011) Exercise and executive function in individuals with chronic stroke: a pilot study. J Neurol Phys Ther 35:11–17

    Article  PubMed Central  PubMed  Google Scholar 

  13. Quaney B, Boyd L, McDowd J et al (2009) Aerobic exercise improves cognition and motor function poststroke. Neurorehabil Neural Repair 23:879–885

    Article  PubMed Central  PubMed  Google Scholar 

  14. Black J, Isaacs K, Anderson B et al (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87:5568–5572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ding Y, Li J, Zhao Y et al (2006) Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res 3:15–23

    Article  CAS  PubMed  Google Scholar 

  16. Isaacs K, Anderson B, Alcantara A et al (1992) Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab 12:110–119

    Article  CAS  PubMed  Google Scholar 

  17. Kleim JA, Cooper NR, Vandenberg PM (2002) Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res 934:1–6

    Article  CAS  PubMed  Google Scholar 

  18. Sikorski A, Hebert N, Swain R (2008) Conjugated linoleic acid (CLA) inhibits new vessel growth in the mammalian brain. Brain Res 1213:35–40. doi:10.1016/j.brainres.2008.01.096

    Article  CAS  PubMed  Google Scholar 

  19. Swain R, Harris A, Wiener E et al (2003) Prolonged exercise induced angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046. doi:10.1016/S0306-4522(02)00664-4

    Article  CAS  PubMed  Google Scholar 

  20. van der Borght K, Kobor-Nyakas D, Klauke K et al (2009) Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 19:928–936. doi:10.1002/hipo.20545

    Article  PubMed  Google Scholar 

  21. Kerr A, Steuer E, Pochtarev V et al (2010) Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 171:214–226. doi:10.1016/j.neuroscience.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  22. Thompson KJ, Bulinski SC, Powell SK, Sikorski AM, Swain RA (2000) Time-dependent expression of the tyrosine kinase receptors FLK-1 and FLT-1 in the cerebellum of the exercised rat. Society for Neuroscience Abstract, New Orleans

    Google Scholar 

  23. Bulinski SC, Thompson KJ, Powell SK, Sikorski AM, Swain RA (2000) Increased immunolabeling of Flk-1 receptors in primary motor cortex of the adult rat following exercise. Society for Neuroscience Abstract, New Orleans

    Google Scholar 

  24. Yu B, Yu C, Robertson RT (1994) Patterns of capillaries in developing cerebral and cerebellar cortices of rats. Acta Anat (Basel) 149:128–133

    Article  CAS  Google Scholar 

  25. Mouton P (2002) Principles of unbiased stereology: an introduction for bioscientists. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  26. Rasband WS ImageJ. U S National Institutes of Health, Bethesda, Maryland, USA http://imagej.nih.gov/ij/. Accessed 1997–2012

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Berggren, K.L., Kay, J.J.M., Swain, R.A. (2014). Examining Cerebral Angiogenesis in Response to Physical Exercise. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics