Advertisement

siRNA Delivery via Electropulsation: A Review of the Basic Processes

  • Muriel Golzio
  • Justin Teissie
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1121)

Abstract

Due to their capacity for inducing strong and sequence specific gene silencing in cells, small interfering RNAs (siRNAs) are now recognized not only as powerful experimental tools for basic research in Molecular biology but with promising potentials in therapeutic development. Delivery is a bottleneck in many studies. There is a common opinion that full potential of siRNA as therapeutic agent will not be attained until better methodologies for its targeted intracellular delivery to cells and tissues are developed. Electropulsation (EP) is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. This review will describe how siRNA electrotransfer obeys characterized biophysical processes (cell-size-dependent electropermeabilization, electrophoretic drag) with a strong control of a low loss of viability. Protocols can be easily adjusted by a proper setting of the electrical parameters and pulsing buffers. EP can be easily directly applied on animals. Preclinical studies showed that electropermeabilization brings a direct cytoplasmic distribution of siRNA and an efficient silencing of the targeted protein expression. EP appears as a promising tool for clinical applications of gene silencing. A panel of successful trials will be given.

Key words

siRNA Electropulsation Electrophoretic drag In vivo Preclinical 

Notes

Acknowledgements

The authors want to thank their colleagues (Dr. S Chabot, M.P. Rols, E. Bellard, and S. Pelofy) in the group for many discussions.

The work was supported by grants from the EU (FP7 oncomirs #201102) and from the region Midi Pyrénées (# 11052700).

Research was conducted in the scope of the EBAM European Associated Laboratory (LEA) and of the COST Action TD1104 European network for development of electroporation-based technologies and treatments (EP4Bio2Med).

References

  1. 1.
    Higuchi Y, Kawakami S, Hashida M (2010) Strategies for in vivo delivery of siRNAs: recent progress. BioDrugs 24:195–205PubMedCrossRefGoogle Scholar
  2. 2.
    Singh SK, Hajeri PB (2009) siRNAs: their potential as therapeutic agents – Part II. Methods of delivery. Drug Discov Today 14:859–865PubMedCrossRefGoogle Scholar
  3. 3.
    Krieg AM (2011) Is RNAi dead? Mol Ther 19:1001–1002PubMedCrossRefGoogle Scholar
  4. 4.
    Baker M (2010) Homing in on delivery. Nature 464:1225–1228CrossRefGoogle Scholar
  5. 5.
    Hajeri PB, Singh SK (2009) siRNAs: their potential as therapeutic agents – Part I. Designing of siRNAs. Drug Discov Today 14:851–858PubMedCrossRefGoogle Scholar
  6. 6.
    Escoffre JM, Debin A, Reynes JP et al (2008) Long-lasting in vivo gene silencing by electrotransfer of shRNA expressing plasmid. Technol Cancer Res Treat 7:109–116PubMedGoogle Scholar
  7. 7.
    Mazda O, Kishida T (2009) Molecular therapeutics of cancer by means of electroporation-based transfer of siRNAs and EBV-based expression vectors. Front Biosci (Elite Ed) 1:316–331Google Scholar
  8. 8.
    Golzio M, Mazzolini L, Ledoux A et al (2007) In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther 14:752–759PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf H, Rols MP, Boldt E, Neumann E, Teissie J (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66:524–531PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Neumann E, Werner E, Sprafke A, Kruger K (1992) Electroporation phenomena. Electrooptics of plasmid DNA and of lipid bilayer vesicles. In: Jennings BR, Stoylov SP (eds) Colloid and molecular electro-optics. IOP publishing LTD, Bristol, pp 197–206Google Scholar
  11. 11.
    Rols MP, Delteil C, Serin G, Teissié J (1994) Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res 22:540PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cemazar M, Sersa G (2007) Electrotransfer of therapeutic molecules into tissues. Curr Opin Mol Ther 9:554–562PubMedGoogle Scholar
  13. 13.
    Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040PubMedCrossRefGoogle Scholar
  14. 14.
    Rettig GR, Rice KG (2009) Quantitative in vivo imaging of non-viral-mediated gene expression and RNAi-mediated knockdown. Methods Mol Biol 574:155–171PubMedCrossRefGoogle Scholar
  15. 15.
    Berezhna SY, Supekova L, Supek F, Schultz PG, Deniz AA (2006) siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci USA 103:7682–7687PubMedCrossRefGoogle Scholar
  16. 16.
    Paganin-Gioanni A, Bellard E, Escoffre JM, Rols MP, Teissie J, Golzio M (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci USA 108:10443–10447PubMedCrossRefGoogle Scholar
  17. 17.
    Stroh T, Erben U, Kühl AA, Zeitz M, Siegmund B (2010) Combined pulse electroporation – a novel strategy for highly efficient transfection of human and mouse cells. PLoS One 5:e9488PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Heng JB, Aksimentiev A, Ho C, Marks P et al (2006) The electromechanics of DNA in a synthetic nanopore. Biophys J 90:1098–1106PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814PubMedCrossRefGoogle Scholar
  20. 20.
    Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K Jr (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J 59:209–220PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67PubMedCrossRefGoogle Scholar
  23. 23.
    Kariko K, Bhuyan P, Capodici J, Weissman D (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172:6545–6549PubMedGoogle Scholar
  24. 24.
    Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771PubMedCrossRefGoogle Scholar
  25. 25.
    Raemdonck K, Remaut K, Lucas B, Sanders NN, Demeester J, De Smedt SC (2006) In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry 45:10614–10623PubMedCrossRefGoogle Scholar
  26. 26.
    Corey DR (2007) Chemical modification: the key to clinical application of RNA interference? J Clin Invest 117:3615–3622PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975PubMedCrossRefGoogle Scholar
  28. 28.
    Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 97:5633–5638PubMedCrossRefGoogle Scholar
  29. 29.
    Orio J, Bellard E, Baaziz H et al (2013) Sub-cellular temporal and spatial distribution of electrotransferred LNA/DNA oligomer. J RNAi Gene Silencing 9:479–485PubMedCentralPubMedGoogle Scholar
  30. 30.
    Pelofy S, Teissié J, Golzio M, Chabot S (2012) Chemically modified oligonucleotide-increased stability negatively correlates with its efficacy despite efficient electrotransfer. J Membr Biol 245:565–571PubMedCrossRefGoogle Scholar
  31. 31.
    Teissié J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta 1724:270–280PubMedCrossRefGoogle Scholar
  32. 32.
    Neumann E, Shaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845PubMedGoogle Scholar
  33. 33.
    De Gennes PG (1999) Passive entry of a DNA molecule into a small pore. Proc Natl Acad Sci USA 96:7262–7264PubMedCrossRefGoogle Scholar
  34. 34.
    Yu M, Tan W, Lin H (2012) A stochastic model for DNA translocation through an electropore. Biochim Biophys Acta 1818:2494–2501PubMedCrossRefGoogle Scholar
  35. 35.
    Mihovilovic M, Hagerty N, Stein D (2013) Statistics of DNA capture by a solid-state nanopore. Phys Rev Lett 110:028102PubMedCrossRefGoogle Scholar
  36. 36.
    Smith KC, Neu JC, Krassowska W (2004) Model of creation and evolution of stables electropores for DNA delivery. Biophys J 86:2813–2826PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Neu JC, Krassowska W (2003) Modeling postshock evolution of large electropores. Phys Rev E Stat Nonlin Soft Matter Phys 67:021915PubMedCrossRefGoogle Scholar
  39. 39.
    Sukharev SI, Titomirov AV, Klenchin VA (1994) Electrically induced DNA transfer into cells. Electroporation in vivo. In: Wolff JA (ed) Gene therapeutics: methods and applications of direct gene transfer. Boston, MA, Birkhäuser, pp 210–232CrossRefGoogle Scholar
  40. 40.
    Hristova NI, Tsoneva I, Neumann E (1997) Sphingosine-mediated electroporative DNA transfer through lipid bilayers. FEBS Lett 415:81–86PubMedCrossRefGoogle Scholar
  41. 41.
    Spassova M, Tsoneva I, Petrov AG, Petkova JI, Neumann E (1994) Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophys Chem 52:267–274PubMedCrossRefGoogle Scholar
  42. 42.
    Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YA (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320–1327PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Winterbourne DJ, Thomas S, Hermon-Taylor J, Hussain I, Johnstone AP (1988) Electric-shock-mediated transfection of cells. Biochem J 251:427–434PubMedGoogle Scholar
  44. 44.
    Klenchin VA, Sukharev SI, Serov SM, Chernomordik LV, Chizmadzev YA (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys J 60:804–811PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91:11512–11516PubMedCrossRefGoogle Scholar
  46. 46.
    Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4015–4053CrossRefGoogle Scholar
  47. 47.
    Bandyopadhyay S, Tarek M, Klein ML (1999) Molecular dynamics study of lipid-DNA complexes. J Phys Chem B 103:10075–10080CrossRefGoogle Scholar
  48. 48.
    Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc 134:13938–13941PubMedCrossRefGoogle Scholar
  49. 49.
    Jain T, Papas A, Jadhav A, McBride R, Saez E (2012) In situ electroporation of surface-bound siRNAs in microwell arrays. Lab Chip 12:939–947PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Mobergslien A, Sioud M (2010) Optimized protocols for siRNA delivery into monocytes and dendritic cells. Methods Mol Biol 629:71–85PubMedGoogle Scholar
  51. 51.
    Broderick KE, Chan A, Lin F et al (2012) Optimized in vivo transfer of small interfering RNA targeting dermal tissue using in vivo surface electroporation. Mol Ther Nucleic Acids 1:e11PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Kang J, Ramu S, Lee S et al (2009) Phosphate-buffered saline-based nucleofection of primary endothelial cells. Anal Biochem 386:251–255PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Jordan ET, Collins M, Terefe J, Ugozzoli L, Rubio T (2008) Optimizing electroporation conditions in primary and other difficult-to-transfect cells. J Biomol Tech 19:328–334PubMedCentralPubMedGoogle Scholar
  54. 54.
    Fujimoto H, Kato K, Iwata H (2008) Electroporation microarray for parallel transfer of small interfering RNA into mammalian cells. Anal Bioanal Chem 392:1309–1316PubMedCrossRefGoogle Scholar
  55. 55.
    Adamo A, Arione A, Sharei A, Jensen KF (2013) Flow-through comb electroporation device for delivery of macromolecules. Anal Chem 85:1637–1641PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Wei Z, Zhao D, Li X et al (2011) A laminar flow electroporation system for efficient DNA and siRNA delivery. Anal Chem 83:5881–5887PubMedCrossRefGoogle Scholar
  57. 57.
    Huang H, Wei Z, Huang Y et al (2011) An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip 11:163–172PubMedCrossRefGoogle Scholar
  58. 58.
    Wahlgren J, De L, Karlson T et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345PubMedCrossRefGoogle Scholar
  60. 60.
    Fujimoto H, Kato K, Iwata H (2010) Layer-by-layer assembly of small interfering RNA and poly(ethyleneimine) for substrate-mediated electroporation with high efficiency. Anal Bioanal Chem 397:571–578PubMedCrossRefGoogle Scholar
  61. 61.
    Hu W, Zong Q, John-Baptiste A, Jessen B (2011) Transient knock down of checkpoint kinase 1 in hematopoietic progenitors is linked to bone marrow toxicity. Toxicol Lett 204:141–147PubMedCrossRefGoogle Scholar
  62. 62.
    Jantsch J, Turza N, Volke M et al (2008) Small interfering RNA (siRNA) delivery into murine bone marrow-derived dendritic cells by electroporation. Immunol Meth 337:71–77CrossRefGoogle Scholar
  63. 63.
    Wiese M, Castiglione K, Hensel M, Schleicher U, Bogdan C, Jantsch J (2010) Small interfering RNA (siRNA) delivery into murine bone marrow-derived macrophages by electroporation. J Immunol Methods 353:102–110PubMedCrossRefGoogle Scholar
  64. 64.
    Slanina H, Schmutzler M, Christodoulides M, Kim KS, Schubert-Unkmeir A (2012) Effective plasmid DNA and small interfering RNA delivery to diseased human brain microvascular endothelial cells. J Mol Microbiol Biotechnol 22:245–257PubMedCrossRefGoogle Scholar
  65. 65.
    Tanaka M, Asaoka M, Yanagawa Y, Hirashima N (2011) Postmitotic CNS neurons Long-term gene-silencing effects of siRNA introduced by single-cell electroporation into postmitotic CNS neurons. Neurochem Res 36:1482–1489PubMedCrossRefGoogle Scholar
  66. 66.
    Tanaka M, Yanagawa Y, Hirashima N (2009) Cerebellar cell cultures Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures. J Neurosci Methods 178:80–86PubMedCrossRefGoogle Scholar
  67. 67.
    Zhao X, Min CK, Ko JK, Parness J, Kim do H, Weisleder N, Ma J (2010) Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin-1 expression. Biophys J 99:1556–1564PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Lefebvre B, Vandewalle B, Longue J et al (2010) Efficient gene delivery and silencing of mouse and human pancreatic islets. BMC Biotechnol 10:28PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Mantei A, Rutz S, Janke M et al (2008) siRNA stabilization prolongs gene knockdown in primary T lymphocytes. Eur J Immunol 38:2616–2625PubMedCrossRefGoogle Scholar
  70. 70.
    Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–240PubMedCrossRefGoogle Scholar
  71. 71.
    Gilbert RA, Jaroszeski MJ, Heller R (1997) Novel electrode designs for electrochemotherapy. Biochim Biophys Acta 1334:9–14PubMedCrossRefGoogle Scholar
  72. 72.
    Jaroszeski MJ, Gilbert RA, Heller R (1997) In vivo antitumor effects of electrochemotherapy in a hepatoma model. Biochim Biophys Acta 1334:15–18PubMedCrossRefGoogle Scholar
  73. 73.
    Ramirez LH, Orlowski S, An D et al (1998) Electrochemotherapy on liver tumours in rabbits. Br J Cancer 77:2104–2111PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Mazeres S, Sel D, Golzio M, Pucihar G, Tamzali Y, Miklavcic D, Teissie J (2009) Non-invasive contact electrodes for in vivo localized cutaneous electropulsation and associated drug and nucleic acid delivery. J Control Release 134:125–131PubMedCrossRefGoogle Scholar
  75. 75.
    Spugnini EP, Citro G, Porrello A (2005) Rational design of new electrodes for electrochemotherapy. J Exp Clin Cancer Res 24:245–254PubMedGoogle Scholar
  76. 76.
    Tjelle TE, Salte R, Mathiesen I, Kjeken R (2006) A novel electroporation device for gene delivery in large animals and humans. Vaccine 24:4667–4670PubMedCrossRefGoogle Scholar
  77. 77.
    Pucihar G, Kotnik T, Teissié J, Miklavcic D (2007) Electropermeabilization of dense cell suspensions. Eur Biophys J 36:173–185PubMedCrossRefGoogle Scholar
  78. 78.
    Wasungu L, Escoffre JM, Valette A, Teissie J, Rols MP (2009) A 3D in vitro spheroid model as a way to study the mechanisms of electroporation. Int J Pharm 379:278–284PubMedCrossRefGoogle Scholar
  79. 79.
    Molnar MJ, Gilbert R, Lu Y et al (2004) Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther 10:447–455PubMedCrossRefGoogle Scholar
  80. 80.
    Filleur S, Courtin A, Ait-Si-Ali S et al (2003) SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 63:3919–3922PubMedGoogle Scholar
  81. 81.
    Paganin-Gioanni A, Bellard E, Couderc B, Teissie J, Golzio M (2008) Tracking in vitro and in vivo siRNA electrotransfer in tumor cells. J RNAi Gene Silencing 4:281–288PubMedCentralPubMedGoogle Scholar
  82. 82.
    Golzio M, Mazzolini L, Moller P, Rols MP, Teissie J (2005) Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther 12:246–251PubMedCrossRefGoogle Scholar
  83. 83.
    Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108PubMedCrossRefGoogle Scholar
  84. 84.
    McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39PubMedCrossRefGoogle Scholar
  85. 85.
    Marra E, Palombo F, Ciliberto G, Aurisicchio L (2013) Kinesin spindle protein SiRNA slows tumor progression. J Cell Physiol 228:58–64PubMedCrossRefGoogle Scholar
  86. 86.
    Takei Y, Nemoto T, Mu P et al (2008) In vivo silencing of a molecular target by short interfering RNA electroporation: tumor vascularization correlates to delivery efficiency. Mol Cancer Ther 7:211–221PubMedCrossRefGoogle Scholar
  87. 87.
    Golzio M, Mazzolini L, Paganin-Gioanni A, Teissié J (2009) Targeted gene silencing into solid tumors with electrically mediated siRNA delivery. Methods Mol Biol 555:15–27PubMedCrossRefGoogle Scholar
  88. 88.
    Nakai N, Kishida T, Shin-Ya M, Imanishi J, Ueda Y, Kishimoto S, Mazda O (2007) Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf. Gene Ther 14:357–365PubMedCrossRefGoogle Scholar
  89. 89.
    Nakai N, Kishida T, Hartmann G, Katoh N, Imanishi J, Kishimoto S, Mazda O (2010) Mitf silencing cooperates with IL-12 gene transfer to inhibit melanoma in mice. Int Immunopharmacol 10:540–545PubMedCrossRefGoogle Scholar
  90. 90.
    Wu Z, Li X, Zeng Y et al (2011) In vitro and in vivo inhibition of MRP gene expression and reversal of multidrug resistance by siRNA. Basic Clin Pharmacol Toxicol 108:177–184PubMedCrossRefGoogle Scholar
  91. 91.
    Inoue A, Takahashi KA, Mazda O et al (2005) Electro-transfer of small interfering RNA ameliorated arthritis in rats. Biochem Biophys Res Commun 336:903–908PubMedCrossRefGoogle Scholar
  92. 92.
    Nakagawa S, Arai Y, Mori H, Matsushita Y, Kubo T, Nakanishi T (2009) Small interfering RNA targeting CD81 ameliorated arthritis in rats. Biochem Biophys Res Commun 388:467–472PubMedCrossRefGoogle Scholar
  93. 93.
    Tsuchida S, Arai Y, Kishida T et al (2012) Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis. J Orthop Res 31:525–530PubMedCrossRefGoogle Scholar
  94. 94.
    Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101:16–22PubMedCrossRefGoogle Scholar
  95. 95.
    Matsuda T, Cepko CL (2008) Analysis of gene function in the retina. Methods Mol Biol 423:259–278PubMedCrossRefGoogle Scholar
  96. 96.
    Hao J, Li SK, Liu CY, Kao WW (2009) Electrically assisted delivery of macromolecules into the corneal epithelium. Exp Eye Res 89:934–941PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Muriel Golzio
    • 1
    • 2
  • Justin Teissie
    • 1
    • 2
  1. 1.Centre National de la Recherche ScientifiqueInstitut de Pharmacologie et de Biologie StructuraleToulouseFrance
  2. 2.Université de Toulouse, UPS, IPBSToulouseFrance

Personalised recommendations