Electroporation-Mediated Administration of Candidate DNA Vaccines Against HIV-1

  • Sandhya Vasan
Part of the Methods in Molecular Biology book series (MIMB, volume 1121)


Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.

Key words

HIV Vaccines DNA Electroporation Prevention 



The views expressed are those of the author and should not be construed to represent the positions of the US Army or US Department of Defense.


  1. 1.
    Barre-Sinoussi F, Chermann JC, Rey F et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871PubMedCrossRefGoogle Scholar
  2. 2.
    Gallo RC, Salahuddin SZ, Popovic M et al (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224:500–503PubMedCrossRefGoogle Scholar
  3. 3.
    UNAIDS (2012) Report on the Global AIDS Epidemic. ISBN 978-92-9173-996-7Google Scholar
  4. 4.
    Miller CJ, Li Q, Abel K et al (2005) Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol 79:9217–9227PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Spira AI, Marx PA, Patterson BK et al (1996) Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med 183:215–225PubMedCrossRefGoogle Scholar
  6. 6.
    Haase AT (2010) Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464:217–223PubMedCrossRefGoogle Scholar
  7. 7.
    Gaschen B, Taylor J, Yusim K et al (2002) Diversity considerations in HIV-1 vaccine selection. Science 296:2354–2360PubMedCrossRefGoogle Scholar
  8. 8.
    Letourneau S, Im EJ, Mashishi T et al (2007) Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One 2:e984PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Liao HX, Sutherland LL, Xia SM et al (2006) A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology 353:268–282PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gao F, Korber BT, Weaver E, Liao HX, Hahn BH, Haynes BF (2004) Centralized immunogens as a vaccine strategy to overcome HIV-1 diversity. Expert Rev Vaccines 3:S161–S168PubMedCrossRefGoogle Scholar
  11. 11.
    Barouch DH, O'Brien KL, Simmons NL et al (2010) Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med 16:319–323PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Santra S, Liao HX, Zhang R et al (2010) Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse hiv strains in monkeys. Nat Med 16:324–328PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ndhlovu ZM, Piechocka-Trocha A, Vine S et al (2011) Mosaic HIV-1 Gag antigens can be processed and presented to human HIV-specific CD8+ T cells. J Immunol 186:6914–6924PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Jiang X, Burke V, Totrov M et al (2010) Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 17:955–961PubMedCrossRefGoogle Scholar
  15. 15.
    Almond D, Kimura T, Kong X, Swetnam J, Zolla-Pazner S, Cardozo T (2010) Structural conservation predominates over sequence variability in the crown of HIV type 1's V3 loop. AIDS Res Hum Retroviruses 26:717–723PubMedCrossRefGoogle Scholar
  16. 16.
    Schief WR, Ban YE, Stamatatos L (2009) Challenges for structure-based HIV vaccine design. Curr Opin HIV AIDS 4:431–440PubMedCrossRefGoogle Scholar
  17. 17.
    Pejchal R, Doores KJ, Walker LM et al (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kunert R, Wolbank S, Stiegler G, Weik R, Katinger H (2004) Characterization of molecular features, antigen-binding, and in vitro properties of IgG and IgM variants of 4E10, an anti-HIV type 1 neutralizing monoclonal antibody. AIDS Res Hum Retroviruses 20:755–762PubMedCrossRefGoogle Scholar
  19. 19.
    Alam SM, McAdams M, Boren D et al (2007) The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J Immunol 178:4424–4435PubMedCentralPubMedGoogle Scholar
  20. 20.
    Deeks SG, Schweighardt B, Wrin T et al (2006) Neutralizing antibody responses against autologous and heterologous viruses in acute versus chronic human immunodeficiency virus (HIV) infection: evidence for a constraint on the ability of hiv to completely evade neutralizing antibody responses. J Virol 80:6155–6164PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dhillon AK, Donners H, Pantophlet R et al (2007) Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J Virol 81:6548–6562PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Doria-Rose NA, Klein RM, Manion MM et al (2009) Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J Virol 83:188–199PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Binley JM, Lybarger EA, Crooks ET et al (2008) Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol 82:11651–11668PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gray ES, Taylor N, Wycuff D et al (2009) Antibody specificities associated with neutralization breadth in plasma from human immunodeficiency virus type 1 subtype C-infected blood donors. J Virol 83:8925–8937PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Simek MD, Rida W, Priddy FH et al (2009) Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol 83:7337–7348PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Sather DN, Armann J, Ching LK et al (2009) Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol 83:757–769PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mouquet H, Scheid JF, Zoller MJ et al (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:591–595Google Scholar
  28. 28.
    Liao HX, Chen X, Munshaw S et al (2011) Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J Exp Med 208:2237–2249Google Scholar
  29. 29.
    Haynes BF, Fleming J, St Clair EW et al (2005) Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308:1906–1908PubMedCrossRefGoogle Scholar
  30. 30.
    Matyas GR, Beck Z, Karasavvas N, Alving CR (2009) Lipid binding properties of 4E10, 2F5, and WR304 monoclonal antibodies that neutralize HIV-1. Biochim Biophys Acta 1788:660–665PubMedCrossRefGoogle Scholar
  31. 31.
    Mouquet H, Warncke M, Scheid JF, Seaman MS, Nussenzweig MC (2012) Enhanced HIV-1 neutralization by antibody heteroligation. Proc Natl Acad Sci U S A 109:875–880Google Scholar
  32. 32.
    Ulmer JB, Donnelly JJ, Parker SE et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749PubMedCrossRefGoogle Scholar
  33. 33.
    Donnelly JJ, Wahren B, Liu MA (2005) DNA vaccines: progress and challenges. J Immunol 175:633–639PubMedGoogle Scholar
  34. 34.
    Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8:108–120PubMedCrossRefGoogle Scholar
  35. 35.
    Wang R, Doolan DL, Le TP et al (1998) Induction of antigen-specific cytotoxic t lymphocytes in humans by a malaria DNA vaccine. Science 282:476–480PubMedCrossRefGoogle Scholar
  36. 36.
    Rottinghaus ST, Poland GA, Jacobson RM, Barr LJ, Roy MJ (2003) Hepatitis B DNA vaccine induces protective antibody responses in human non-responders to conventional vaccination. Vaccine 21:4604–4608PubMedCrossRefGoogle Scholar
  37. 37.
    Catanzaro AT, Roederer M, Koup RA et al (2007) Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine 25:4085–4092PubMedCrossRefGoogle Scholar
  38. 38.
    Graham BS, Koup RA, Roederer M et al (2006) Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis 194:1650–1660PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rosati M, Bergamaschi C, Valentin A et al (2009) DNA vaccination in rhesus macaques induces potent immune responses and decreases acute and chronic viremia after SIVmac251 challenge. Proc Natl Acad Sci U S A 106:15831–15836PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Fuller DH, Rajakumar PA, Wilson LA et al (2002) Induction of mucosal protection against primary, heterologous simian immunodeficiency virus by a DNA vaccine. J Virol 76:3309–3317PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 18:927–974PubMedCrossRefGoogle Scholar
  42. 42.
    Donnelly JJ, Ulmer JB, Shiver JW, Liu MA (1997) DNA vaccines. Annu Rev Immunol 15:617–648PubMedCrossRefGoogle Scholar
  43. 43.
    Nwanegbo E, Vardas E, Gao W et al (2004) Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of the Gambia, South Africa, and the United States. Clin Diagn Lab Immunol 11:351–357PubMedCentralPubMedGoogle Scholar
  44. 44.
    Mast TC, Kierstead L, Gupta SB et al (2010) International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential hiv vaccine trials. Vaccine 28:950–957Google Scholar
  45. 45.
    Santra S, Seaman MS, Xu L et al (2005) Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J Virol 79:6516–6522PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Schalk JA, Mooi FR, Berbers GA, van Aerts LA, Ovelgonne H, Kimman TG (2006) Preclinical and clinical safety studies on DNA vaccines. Hum Vaccin 2:45–53PubMedCrossRefGoogle Scholar
  47. 47.
    Mulligan MJ, Russell ND, Celum C et al (2006) Excellent safety and tolerability of the human immunodeficiency virus type 1 pGA2/JS2 plasmid DNA priming vector vaccine in hiv type 1 uninfected adults. AIDS Res Hum Retroviruses 22:678–683PubMedCrossRefGoogle Scholar
  48. 48.
    Gorse GJ, Baden LR, Wecker M et al (2008) Safety and immunogenicity of cytotoxic T-lymphocyte poly-epitope, DNA plasmid (EP HIV-1090) vaccine in healthy, human immunodeficiency virus type 1 (HIV-1)-uninfected adults. Vaccine 26:215–223PubMedCrossRefGoogle Scholar
  49. 49.
    Jaoko W, Nakwagala FN, Anzala O et al (2008) Safety and immunogenicity of recombinant low-dosage HIV-1 A vaccine candidates vectored by plasmid p THr DNA or modified vaccinia virus Ankara (mva) in humans in East Africa. Vaccine 26:2788–2795PubMedCrossRefGoogle Scholar
  50. 50.
    Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788PubMedCrossRefGoogle Scholar
  51. 51.
    Amara RR, Villinger F, Altman JD et al (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/mva vaccine. Science 292:69–74PubMedCrossRefGoogle Scholar
  52. 52.
    McConkey SJ, Reece WH, Moorthy VS et al (2003) Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 9:729–735PubMedCrossRefGoogle Scholar
  53. 53.
    Harari A, Bart PA, Stohr W et al (2008) An HIV-1 clade c DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 205:63–77PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Goonetilleke N, Moore S, Dally L et al (2006) Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 GAG coupled to CD8+ T-cell epitopes. J Virol 80:4717–4728PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Wang S, Kennedy JS, West K et al (2008) Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime-protein boost HIV-1 vaccine in healthy human volunteers. Vaccine 26:3947–3957PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Lu S (2008) Immunogenicity of DNA vaccines in humans: it takes two to tango. Hum Vaccin 4:449–452PubMedCrossRefGoogle Scholar
  57. 57.
    Zolla-Pazner S, Kong XP, Jiang X et al (2011) Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. J Virol 85:9887–9898Google Scholar
  58. 58.
    Manam S, Ledwith BJ, Barnum AB et al (2000) Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 43:273–281PubMedCrossRefGoogle Scholar
  59. 59.
    Manoj S, Babiuk LA, van Drunen Littel-van den Hurk S (2004) Approaches to enhance the efficacy of DNA vaccines. Crit Rev Clin Lab Sci 41:1–39PubMedCrossRefGoogle Scholar
  60. 60.
    Mathiesen I (1999) Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 6:508–514PubMedCrossRefGoogle Scholar
  61. 61.
    Widera G, Austin M, Rabussay D et al (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640PubMedGoogle Scholar
  62. 62.
    Babiuk S, Baca-Estrada ME, Foldvari M et al (2004) Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 110:1–10PubMedCrossRefGoogle Scholar
  63. 63.
    Liu J, Kjeken R, Mathiesen I, Barouch DH (2008) Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J Virol 82:5643–5649PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Babiuk S, Baca-Estrada ME, Foldvari M et al (2002) Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 20:3399–3408PubMedCrossRefGoogle Scholar
  65. 65.
    Luxembourg A, Hannaman D, Ellefsen B, Nakamura G, Bernard R (2006) Enhancement of immune responses to an HBV DNA vaccine by electroporation. Vaccine 24:4490–4493PubMedCrossRefGoogle Scholar
  66. 66.
    Li Z, Zhang H, Fan X et al (2006) DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. Vaccine 24:4565–4568PubMedCrossRefGoogle Scholar
  67. 67.
    Hooper JW, Golden JW, Ferro AM, King AD (2007) Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25:1814–1823PubMedCrossRefGoogle Scholar
  68. 68.
    Dobano C, Widera G, Rabussay D, Doolan DL (2007) Enhancement of antibody and cellular immune responses to malaria DNA vaccines by in vivo electroporation. Vaccine 25:6635–6645PubMedCrossRefGoogle Scholar
  69. 69.
    Livingston BD, Little SF, Luxembourg A, Ellefsen B, Hannaman D (2010) Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques. Vaccine 28:1056–1061Google Scholar
  70. 70.
    Chen MW, Cheng TJ, Huang Y et al (2008) A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc Natl Acad Sci U S A 105:13538–13543PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    LeBlanc R, Vasquez Y, Hannaman D, Kumar N (2008) Markedly enhanced immunogenicity of a Pfs25 DNA-based malaria transmission-blocking vaccine by in vivo electroporation. Vaccine 26:185–192PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Bodles-Brakhop AM, Draghia-Akli R (2008) DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 7:1085–1101PubMedCrossRefGoogle Scholar
  73. 73.
    Best SR, Peng S, Juang CM et al (2009) Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 27:5450–5459PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Dupuis M, Denis-Mize K, Woo C et al (2000) Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 165:2850–2858PubMedGoogle Scholar
  75. 75.
    Selby M, Goldbeck C, Pertile T, Walsh R, Ulmer J (2000) Enhancement of DNA vaccine potency by electroporation in vivo. J Biotechnol 83:147–152PubMedCrossRefGoogle Scholar
  76. 76.
    Uno-Furuta S, Tamaki S, Takebe Y et al (2001) Induction of virus-specific cytotoxic T lymphocytes by in vivo electric administration of peptides. Vaccine 19:2190–2196PubMedCrossRefGoogle Scholar
  77. 77.
    Otten G, Schaefer M, Doe B et al (2004) Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22:2489–2493PubMedCrossRefGoogle Scholar
  78. 78.
    Otten GR, Schaefer M, Doe B et al (2006) Potent immunogenicity of an HIV-1 gag-pol fusion DNA vaccine delivered by in vivo electroporation. Vaccine 24:4503–4509PubMedCrossRefGoogle Scholar
  79. 79.
    Luckay A, Sidhu MK, Kjeken R et al (2007) Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 81:5257–5269PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Kulkarni V, Jalah R, Ganneru B et al (2011) Comparison of immune responses generated by optimized DNA vaccination against SIV antigens in mice and macaques. Vaccine 29:6742–6754Google Scholar
  81. 81.
    Dolter KE, Evans CF, Ellefsen B et al (2011) Immunogenicity, safety, biodistribution and persistence of ADVAX, a prophylactic DNA vaccine for HIV-1, delivered by in vivo electroporation. Vaccine 29:795–803Google Scholar
  82. 82.
    Simon AJ, Casimiro DR, Finnefrock AC et al (2008) Enhanced in vivo transgene expression and immunogenicity from plasmid vectors following electrostimulation in rodents and primates. Vaccine 26:5202–5209PubMedCrossRefGoogle Scholar
  83. 83.
    Yin J, Dai A, Lecureux J et al (2011) High antibody and cellular responses induced to HIV-1 clade c envelope following DNA vaccines delivered by electroporation. Vaccine 29:6763–6770Google Scholar
  84. 84.
    Cristillo AD, Galmin L, Restrepo S et al (2008) HIV-1 Env vaccine comprised of electroporated DNA and protein co-administered with talabostat. Biochem Biophys Res Commun 370:22–26PubMedCrossRefGoogle Scholar
  85. 85.
    Hirao LA, Wu L, Khan AS et al (2008) Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine 26:3112–3120PubMedCrossRefGoogle Scholar
  86. 86.
    Muthumani G, Laddy DJ, Sundaram SG et al (2009) Co-immunization with an optimized plasmid-encoded immune stimulatory interleukin, high-mobility group box 1 protein, results in enhanced interferon-gamma secretion by antigen-specific CD8 T cells. Immunology 128:e612–e620PubMedCrossRefGoogle Scholar
  87. 87.
    Kraynyak KA, Kutzler MA, Cisper NJ, et al (2011) Systemic immunization with CCL27/CTACK modulates immune responses at mucosal sites in mice and macaques. Vaccine 28:1942–1951Google Scholar
  88. 88.
    Belisle SE, Yin J, Shedlock DJ et al (2011) Long-term programming of antigen-specific immunity from gene expression signatures in the PBMC of rhesus macaques immunized with an SIV DNA vaccine. PLoS One 6:e19681Google Scholar
  89. 89.
    Law M, Cardoso RM, Wilson IA, Burton DR (2007) Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J Virol 81:4272–4285PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Cristillo AD, Weiss D, Hudacik L et al (2008) Persistent antibody and T cell responses induced by HIV-1 DNA vaccine delivered by electroporation. Biochem Biophys Res Commun 366:29–35PubMedCrossRefGoogle Scholar
  91. 91.
    Winstone N, Wilson AJ, Morrow G et al (2011) Enhanced control of pathogenic Simian immunodeficiency virus SIVmac239 replication in macaques immunized with an interleukin-12 plasmid and a DNA prime-viral vector boost vaccine regimen. J Virol 85:9578–9587Google Scholar
  92. 92.
    Knudsen ML, Mbewe-Mvula A, Rosario M et al (2012) Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine. J Virol 86:4082–4090Google Scholar
  93. 93.
    Rosario M, Borthwick N, Stewart-Jones GB et al (2012) Prime-boost regimens with adjuvanted synthetic long peptides elicit T cells and antibodies to conserved regions of HIV-1 in macaques. AIDS 26:275–284Google Scholar
  94. 94.
    Hutnick NA, Myles DJ, Hirao L et al (2012) An optimized SIV DNA vaccine can serve as a boost for Ad5 and provide partial protection from a high-dose SIVmac251 challenge. Vaccine 30:3202–3208Google Scholar
  95. 95.
    Hallengard D, Applequist SE, Nystrom S, et al (2012) Immunization with multiple vaccine modalities induce strong HIV-specific cellular and humoral immune responses. Viral Immunol 25:423–432Google Scholar
  96. 96.
    Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB (2008) Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine 26:440–448PubMedCrossRefGoogle Scholar
  97. 97.
    Martinon F, Kaldma K, Sikut R et al (2009) Persistent immune responses induced by a human immunodeficiency virus DNA vaccine delivered in association with electroporation in the skin of nonhuman primates. Hum Gene Ther 20:1291–1307PubMedCrossRefGoogle Scholar
  98. 98.
    Brave A, Gudmundsdotter L, Sandstrom E et al (2010) Biodistribution, persistence and lack of integration of a multigene HIV vaccine delivered by needle-free intradermal injection and electroporation. Vaccine 28:8203–8209Google Scholar
  99. 99.
    Brave A, Nystrom S, Roos AK, Applequist SE (2011) Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses. Immunol Cell Biol 89:492–496Google Scholar
  100. 100.
    Hallengard D, Haller BK, Maltais AK et al (2011) Comparison of plasmid vaccine immunization schedules using intradermal in vivo electroporation. Clin Vaccine Immunol 18:1577–1581Google Scholar
  101. 101.
    Hutnick NA, Myles DJ, Ferraro B et al (2012) Intradermal DNA vaccination enhanced by low-current electroporation improves antigen expression and induces robust cellular and humoral immune responses. Hum Gene Ther 23: 943–950Google Scholar
  102. 102.
    Lin F, Shen X, Kichaev G et al (2012) Optimization of electroporation-enhanced intradermal delivery of DNA vaccine using a minimally invasive surface device. Hum Gene Ther Methods 23:157–168Google Scholar
  103. 103.
    Roos AK, Eriksson F, Timmons JA et al (2009) Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment. PLoS One 4:e7226PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Lin F, Shen X, McCoy JR et al (2011) A novel prototype device for electroporation-enhanced DNA vaccine delivery simultaneously to both skin and muscle. Vaccine 29:6771–6780Google Scholar
  105. 105.
    Rosati M, Valentin A, Jalah R et al (2008) Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine 26:5223–5229PubMedCrossRefGoogle Scholar
  106. 106.
    Valentin A, von Gegerfelt A, Rosati M et al (2010) Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 28:1962–1974Google Scholar
  107. 107.
    van Drunen Littel-van den Hurk S, Hannaman D (2010) Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 9:503–517PubMedCrossRefGoogle Scholar
  108. 108.
    Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34:232–240PubMedCrossRefGoogle Scholar
  109. 109.
    Stevenson FK, Ottensmeier CH, Johnson P et al (2004) DNA vaccines to attack cancer. Proc Natl Acad Sci U S A 101(Suppl 2):14646–14652PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Low L, Mander A, McCann K et al (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 20:1269–1278PubMedCrossRefGoogle Scholar
  111. 111.
    Chudley L, McCann K, Mander A et al (2012) DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother 61:2161–2170Google Scholar
  112. 112.
    Yang FQ, Yu YY, Wang GQ et al (2012) A pilot randomized controlled trial of dual-plasmid HBV DNA vaccine mediated by in vivo electroporation in chronic hepatitis B patients under lamivudine chemotherapy. J Viral Hepat 19:581–593Google Scholar
  113. 113.
    Cellectis Bioresearch, Inc.
  114. 114.
    Luxembourg A, Evans CF, Hannaman D (2007) Electroporation-based DNA immunisation: translation to the clinic. Expert Opin Biol Ther 7:1647–1664PubMedCrossRefGoogle Scholar
  115. 115.
    Vasan S, Hurley A, Schlesinger SJ et al (2011) In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 6(5):e19252, by permission of PLOS One/Creative Commons Attribution LicensePubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Huang Y, Chen Z, Zhang W et al (2008) Design, construction, and characterization of a dual-promoter multigenic DNA vaccine directed against an HIV-1 subtype C/B' recombinant. J Acquir Immune Defic Syndr 47:403–411PubMedCrossRefGoogle Scholar
  117. 117.
    Kopycinski J, Cheeseman H, Ashraf A et al (2012) A DNA-based candidate HIV vaccine delivered via in vivo electroporation induces CD4 responses toward the α4β7-binding V2 loop of HIV gp120 in healthy volunteers. Clin Vaccine Immunol 19:1557–1559Google Scholar
  118. 118.
    Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220PubMedCrossRefGoogle Scholar
  119. 119.
    Haynes BF, Gilbert PB, McElrath MJ et al (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 366:1275–1286PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
  121. 121.
    Currier JR, Ngauy V, de Souza MS et al (2010) Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate. PLoS One 5:e13983Google Scholar
  122. 122.
    Keefer MC, Gilmour J, Hayes P et al (2012) A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 7:e41936Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sandhya Vasan
    • 1
  1. 1.Department of RetrovirologyUS Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS)BangkokThailand

Personalised recommendations