Skip to main content

Evolution of Electroporated DNA Vaccines

Part of the Methods in Molecular Biology book series (MIMB,volume 1121)

Abstract

Vaccines have evolved for hundreds of years, but all utilize the premise that safely pre-exposing the host to some component of a pathogen allows for enhanced immune recognition, and potential protection from disease, upon encountering the pathogen at a later date. Early vaccination strategies used inactivated or attenuated vaccines, many of which contained toxins and other components that resulted in reactogenicity or risk of reversion to virulence. DNA vaccines supplant many of the issues associated with inactivated or attenuated vaccines, but these vaccines tend to provide weak immunological responses, particularly in primates. DNA Electroporation may prove to be the “missing link” in the evolution of DNA vaccines allowing for enhanced immune responses from DNA vaccination in humans thereby resulting in protection from disease post-pathogen exposure.

Key words

  • Anthrax
  • Plague
  • DNA vaccine
  • Recombinant protein vaccine
  • Intramuscular

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9632-8_24
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9632-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Paran N, Sutter G (2009) Smallpox vaccines: new formulations and revised strategies for vaccination. Hum Vacc 5:824–831

    CAS  Google Scholar 

  2. Pace JL, Rossi HA, Esposito VM, Frey SM, Tucker KD, Walker RI (1998) Inactivated whole-cell bacterial vaccines: current status and novel strategies. Vaccine 16:1563–1574

    CAS  PubMed  CrossRef  Google Scholar 

  3. Plotkin SA (2009) Vaccines: the fourth century. Clin Vaccine Immunol 16:1709–1719

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  4. Lakey DL, Voladri RK, Edwards KM et al (2000) Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons. Infect Immun 68:233–238

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  5. Ishii K (2008) Perspectives on recombinant live vaccines. Nippon Rinsho 66:1903–1907

    PubMed  Google Scholar 

  6. Johnston SA, Talaat AM, McGuire MJ (2002) Genetic immunization: what’s in a name? Arch Med Res 33:325–329

    CAS  PubMed  CrossRef  Google Scholar 

  7. Hasan UA, Abai AM, Harper DR, Wren BW, Morrow WJ (1999) Nucleic acid immunization: concepts and techniques associated with third generation vaccines. J Immunol Methods 229:1–22

    CAS  PubMed  CrossRef  Google Scholar 

  8. Brandsma JL (2006) DNA vaccine design. Methods Mol Med 127:3–10

    CAS  PubMed  Google Scholar 

  9. Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A (2007) Biosafety of DNA vaccines: new generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 28:3888–3895

    CrossRef  Google Scholar 

  10. Cranenburgh RM, Lewis KS, Hanak JA (2004) Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli. J Mol Microbiol Biotechnol 7:197–203

    CAS  PubMed  CrossRef  Google Scholar 

  11. Luke J, Carnes AE, Hodgson CP, Williams JA (2009) Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine 27:6454–6459

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  12. Dean DA, Dean BS, Muller S, Smith LC (1999) Sequence requirements for plasmid nuclear import. Exp Cell Res 253:713–722

    CAS  PubMed  CrossRef  Google Scholar 

  13. Wu X, Jornvall H, Berndt KD, Oppermann U (2004) Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance. Biochem Biophys Res Commun 313:89–96

    CAS  PubMed  CrossRef  Google Scholar 

  14. Cassan M, Rousset JP (2001) UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2:3

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  15. Narum DL, Kumar S, Rogers WO et al (2001) Codon optimization of gene fragments encoding Plasmodium falciparum merzoite proteins enhances DNA vaccine protein expression and immunogenicity in mice. Infect Immun 69:7250–7253

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  16. Zheng C, Brownlie R, Babiuk LA, van Drunen Littel-van den Hurk S (2005) Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 VP22. J Virol 79:11864–11872

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  17. Robinson HL, Ginsberg HS, Davis HL, Johnston SA, Liu MA (1997) The scientific future of DNA for immunization. American Academy of Microbiology, Washington, DC

    Google Scholar 

  18. McCluskie MJ, Brazolot Millan CL, Gramzinski RA et al (1999) Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol Med 5:287–300

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  19. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    CAS  PubMed  CrossRef  Google Scholar 

  20. Lu S, Wang S, Grimes-Serrano JM (2008) Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 7:175–191

    CAS  PubMed  CrossRef  Google Scholar 

  21. Vilalta A, Mahajan RK, Hartikka J et al (2005) I. Poloxamer-formulated plasmid DNA-based human cytomegalovirus vaccine: evaluation of plasmid DNA biodistribution/persistence and integration. Hum Gene Ther 16:1143–1150

    CAS  PubMed  CrossRef  Google Scholar 

  22. Sheets RL, Stein J, Manetz TS et al (2006) Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile Virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicol Sci 91:610–619

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  23. Ledwith BJ, Manam S, Troilo PJ et al (2000) Plasmid DNA vaccines: assay for integration into host genomic DNA. Dev Biol (Basel) 104:33–43

    CAS  Google Scholar 

  24. Lewis PJ, Babiuk LA (1999) DNA vaccines: a review. Adv Virus Res 54:129–188

    CAS  PubMed  CrossRef  Google Scholar 

  25. Makrides SC (2003) Gene transfer and expression in mammalian cells. In: Makrides SC (ed) New comprehensive biochemistry, vol 38. Elsevier, Amsterdam

    Google Scholar 

  26. Fazio VM (1997) “Naked” DNA transfer technology for genetic vaccination against infectious disease. Res Virol 148:101–108

    CAS  PubMed  CrossRef  Google Scholar 

  27. Cristillo AD, Wang S, Caskey MS et al (2006) Preclinical evaluation of cellular immune responses elicited by a polyvalent DNA prime/protein boost HIV-1 vaccine. Virology 346:151–168

    CAS  PubMed  CrossRef  Google Scholar 

  28. Pal R, Yu Q, Wang S et al (2006) Definitive toxicology and biodistribution study of a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 (HIV-1) vaccine in rabbits. Vaccine 24:1225–1234

    CAS  PubMed  CrossRef  Google Scholar 

  29. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384

    CAS  PubMed  CrossRef  Google Scholar 

  30. Chiarella P, Fazio VM, Signori E (2010) Application of electroporation in DNA vaccination protocols. Curr Gene Ther 4:281–286

    CrossRef  Google Scholar 

  31. Dupuis M, Denis-Mize K, Woo C et al (2000) Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 165:2850–2858

    CAS  PubMed  Google Scholar 

  32. Hartikka J, Bozoukova V, Jones D et al (2000) Sodium phosphate enhances plasmid DNA expression in vivo. Gene Ther 7:1171–1182

    CAS  PubMed  CrossRef  Google Scholar 

  33. Satkauskas S, Bureau MF, Mahfoudi A, Mir LM (2001) Slow accumulation of plasmid in muscle cells: supporting evidence for a mechanism of DNA uptake by receptor-mediated endocytosis. Mol Ther 4:317–323

    CAS  PubMed  CrossRef  Google Scholar 

  34. Wolff JA, Budker V (2005) The mechanism of naked DNA uptake and expression. Adv Genet 54:3–20

    CAS  PubMed  Google Scholar 

  35. March JB (2004) DNA vaccination – research tool or a practical reality? Expert Rev Vaccines 3:113–117

    CAS  PubMed  CrossRef  Google Scholar 

  36. Braun S (2008) Muscular gene transfer using nonviral vectors. Curr Gene Ther 8:391–405

    CAS  PubMed  CrossRef  Google Scholar 

  37. Dean HJ, Fuller D, Osorio JE (2003) Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis. Comp Immunol Microbiol Infect Dis 26:373–388

    PubMed  CrossRef  Google Scholar 

  38. Rook A, Burns T (2004) Rook’s textbook of dermatology, 7th edn. Blackwell Science, Malden, MA

    Google Scholar 

  39. Bauer J, Bahmer FA, Worl J, Neuhuber W, Schuler G, Fartasch M (2001) A strikingly constant ratio exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using the optical disector method and the confocal laser scanning microscope. J Invest Dermatol 116:313–318

    CAS  PubMed  CrossRef  Google Scholar 

  40. Yu RC, Abrams DC, Alaibac M, Chu AC (1994) Morphological and quantitative analyses of normal epidermal Langerhans cells using confocal scanning laser microscopy. Br J Dermatol 131:843–848

    CAS  PubMed  CrossRef  Google Scholar 

  41. McMahon JM, Wells DJ (2004) Electroporation for gene transfer to skeletal muscles: current status. BioDrugs 18:155–165

    CAS  PubMed  CrossRef  Google Scholar 

  42. Yuan TF (2008) Vaccine submission with muscle electroporation. Vaccine 26:1805–1806

    CAS  PubMed  CrossRef  Google Scholar 

  43. Albrecht MT, Livingston BD, Pesce JT, Bell MG, Hannaman D, Keane-Myers AM (2012) Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague. Vaccine 30:4872–4883

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Keane-Myers, A.M., Bell, M. (2014). Evolution of Electroporated DNA Vaccines. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols