Intradermal Electroporation of RNA

  • Maria L. Knudsen
  • Karl Ljungberg
  • Peter Liljeström
  • Daniel X. Johansson
Part of the Methods in Molecular Biology book series (MIMB, volume 1121)


This chapter describes the in vivo delivery of conventional mRNA or alphaviral replicon RNA via intradermal electroporation. The use of RNA in clinical applications has several potential advantages compared to DNA. For instance, RNA cannot integrate into the host genome, and it does not contain bacterial sequence motifs such as CpG often present in plasmid DNA backbones that can potentially trigger autoimmune responses. Intradermal electroporation is well tolerated and causes only minor trauma compared to intramuscular electroporation. As the skin houses high concentrations of antigen-presenting cells, vaccines could especially benefit from intradermal administration of RNA.

Key words

RNA Intradermal Electroporation Alphavirus Semliki Forest virus Replicon 



This project was supported by the Swedish Research Council and Swedish International Development Cooperation Agency.


  1. 1.
    Gilkeson GS, Grudier JP, Karounos DG et al (1989) Induction of anti-double stranded DNA antibodies in normal mice by immunization with bacterial DNA. J Immunol 142:1482–1486PubMedGoogle Scholar
  2. 2.
    Gilkeson GS, Grudier JP, Pisetsky DS (1989) The antibody response of normal mice to immunization with single-stranded DNA of various species origin. Clin Immunol Immunopathol 51:362–371PubMedCrossRefGoogle Scholar
  3. 3.
    Gilkeson GS, Pritchard AJ, Pisetsky DS (1991) Specificity of anti-DNA antibodies induced in normal mice by immunization with bacterial DNA. Clin Immunol Immunopathol 59:288–300PubMedCrossRefGoogle Scholar
  4. 4.
    Gilkeson GS, Pippen AM, Pisetsky DS (1995) Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest 95:1398–1402PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Roos AK, Eriksson F, Timmons JA et al (2009) Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment. PLoS One 4:e7226PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Pisetsky DS (1996) Immune activation by bacterial DNA: a new genetic code. Immunity 5:303–310PubMedCrossRefGoogle Scholar
  7. 7.
    Nordstrom EK, Forsell MN, Barnfield C et al (2005) Enhanced immunogenicity using an alphavirus replicon DNA vaccine against human immunodeficiency virus type 1. J Gen Virol 86:349–354PubMedCrossRefGoogle Scholar
  8. 8.
    Berglund P, Smerdou C, Fleeton MN et al (1998) Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol 16:562–565PubMedCrossRefGoogle Scholar
  9. 9.
    Ljungberg K, Whitmore AC, Fluet ME et al (2007) Increased immunogenicity of a DNA-launched Venezuelan equine encephalitis virus-based replicon DNA vaccine. J Virol 81:13412–13423PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Dubensky TW Jr, Driver DA, Polo JM et al (1996) Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J Virol 70:508–519PubMedCentralPubMedGoogle Scholar
  11. 11.
    Hariharan MJ, Driver DA, Townsend K et al (1998) DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol 72:950–958PubMedCentralPubMedGoogle Scholar
  12. 12.
    Knudsen ML, Mbewe-Mvula A, Rosario M et al (2012) Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine. J Virol 86:4082–4090PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Fleeton MN, Chen M, Berglund P et al (2001) Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis 183:1395–1398PubMedCrossRefGoogle Scholar
  14. 14.
    Geall AJ, Verma A, Otten GR et al (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA 109:14604–14609PubMedCrossRefGoogle Scholar
  15. 15.
    Schulz O, Diebold SS, Chen M et al (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–892PubMedCrossRefGoogle Scholar
  16. 16.
    Schulz O, Pichlmair A, Rehwinkel J et al (2010) Protein kinase R contributes to immunity against specific viruses by regulating interferon mRNA integrity. Cell Host Microbe 7:354–361PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Weiss R, Scheiblhofer S, Roesler E et al (2010) Prophylactic mRNA vaccination against allergy. Curr Opin Allergy Clin Immunol 10:567–574PubMedCrossRefGoogle Scholar
  18. 18.
    Widera G, Austin M, Rabussay D et al (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640PubMedGoogle Scholar
  19. 19.
    Piggott JM, Sheahan BJ, Soden DM et al (2009) Electroporation of RNA stimulates immunity to an encoded reporter gene in mice. Mol Med Rep 2:753–756PubMedGoogle Scholar
  20. 20.
    Johansson DX, Ljungberg K, Kakoulidou M et al (2012) Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One 7:e29732PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Roos AK, Eriksson F, Walters DC et al (2009) Optimization of skin electroporation in mice to increase tolerability of DNA vaccine delivery to patients. Mol Ther 17:1637–1642PubMedCrossRefGoogle Scholar
  22. 22.
    Roos AK, Moreno S, Leder C et al (2006) Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol Ther 13:320–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maria L. Knudsen
    • 1
  • Karl Ljungberg
    • 1
  • Peter Liljeström
    • 1
  • Daniel X. Johansson
    • 1
  1. 1.Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden

Personalised recommendations