Skip to main content

Natural Killer Cells and Killer-Cell Immunoglobulin-Like Receptor Polymorphisms: Their Role in Hematopoietic Stem Cell Transplantation

  • Protocol
  • First Online:
Bone Marrow and Stem Cell Transplantation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1109))

Abstract

Natural killer (NK) cells are important effector cells in the early control of infected, malignant, and “nonself” cells. Various receptor families are involved in enabling NK cells to detect and efficiently eliminate these target cells. The killer-cell immunoglobulin-like receptor (KIR) family is a set of receptors that are very polymorphic with regard to gene content, expression level, and expression pattern. KIRs are responsible for the induction of a NK cell alloreactive response through their interaction with HLA class I molecules. The role of NK cells in hematopoietic stem cell transplantation (HSCT) has been studied for many years, and induction of antileukemic responses by donor NK cells has been reported. Conflicting data still exist on the exact circumstances in which the KIR repertoire affects and influences clinical outcome after HSCT. More large-scale studies are needed on well-defined cohorts to unravel the mechanism of action of the NK cell-mediated alloresponse in an HSCT setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76:2421–2438

    PubMed  CAS  Google Scholar 

  2. O’Leary JG, Goodarzi M, Drayton DL et al (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7:507–516

    PubMed  Google Scholar 

  3. Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12:500–508

    PubMed  CAS  Google Scholar 

  4. Vivier E, Raulet DH, Moretta A et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214

    PubMed  CAS  Google Scholar 

  6. Warren HS (1996) NK cell proliferation and inflammation. Immunol Cell Biol 74:473–480

    PubMed  CAS  Google Scholar 

  7. Farag SS, Fehniger TA, Ruggeri L et al (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100:1935–1947

    PubMed  CAS  Google Scholar 

  8. Karre K, Ljunggren HG, Piontek G et al (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    PubMed  CAS  Google Scholar 

  9. Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    PubMed  CAS  Google Scholar 

  10. Kim S, Poursine-Laurent J, Truscott SM et al (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:709–713

    PubMed  CAS  Google Scholar 

  11. Ritz J, Schmidt RE, Michon J et al (1988) Characterization of functional surface structures on human natural killer cells. Adv Immunol 42:181–211

    PubMed  CAS  Google Scholar 

  12. Walzer T, Jaeger S, Chaix J et al (2007) Natural killer cells: from CD3(-)NKp46(+) to post-genomics meta-analyses. Curr Opin Immunol 19:365–372

    PubMed  CAS  Google Scholar 

  13. Lanier LL, Testi R, Bindl J et al (1989) Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med 169:2233–2238

    PubMed  CAS  Google Scholar 

  14. Yu J, Mitsui T, Wei M et al (2011) NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J Clin Invest 121:1456–1470

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Nagler A, Lanier LL, Cwirla S et al (1989) Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143:3183–3191

    PubMed  CAS  Google Scholar 

  16. Lanier LL, Le AM, Civin CI et al (1986) The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136:4480–4486

    PubMed  CAS  Google Scholar 

  17. Cooper MA, Fehniger TA, Turner SC et al (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97:3146–3151

    PubMed  CAS  Google Scholar 

  18. Smyth MJ, Cretney E, Kelly JM et al (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501–510

    PubMed  CAS  Google Scholar 

  19. Brown D, Trowsdale J, Allen R (2004) The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 64:215–225

    PubMed  CAS  Google Scholar 

  20. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    PubMed  CAS  Google Scholar 

  21. Borrego F, Masilamani M, Marusina AI et al (2006) The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 35:263–278

    PubMed  CAS  Google Scholar 

  22. Valiante NM, Uhrberg M, Shilling HG et al (1997) Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7:739–751

    PubMed  CAS  Google Scholar 

  23. Cheent K, Khakoo SI (2009) Natural killer cells: integrating diversity with function. Immunology 126:449–457

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9:568–580

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Trowsdale J, Barten R, Haude A et al (2001) The genomic context of natural killer receptor extended gene families. Immunol Rev 181:20–38

    PubMed  CAS  Google Scholar 

  26. Barrow AD, Trowsdale J (2008) The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol Rev 224:98–123

    PubMed  CAS  Google Scholar 

  27. Lanier LL (2009) DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev 227:150–160

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Faure M, Long EO (2002) KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential. J Immunol 168:6208–6214

    PubMed  CAS  Google Scholar 

  29. Marsh SGE, Parham P, Dupont B et al (2003) Killer-cell immunoglobulin-like receptor (KIR) nomenclature report, 2002. Tissue Antigens 62:79–86

    PubMed  CAS  Google Scholar 

  30. Vilches C, Rajalingam R, Uhrberg M et al (2000) KIR2DL5, a novel killer-cell receptor with a D0-D2 configuration of Ig-like domains. J Immunol 164:5797–5804

    PubMed  CAS  Google Scholar 

  31. Wilson MJ, Torkar M, Haude A et al (2000) Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci USA 97:4778–4783

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Norman PJ, Stephens HA, Verity DH et al (2001) Distribution of natural killer cell immunoglobulin-like receptor sequences in three ethnic groups. Immunogenetics 52:195–205

    PubMed  CAS  Google Scholar 

  33. Uhrberg M, Valiante NM, Shum BP et al (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7:753–763

    PubMed  CAS  Google Scholar 

  34. Martin AM, Kulski JK, Gaudieri S et al (2004) Comparative genomic analysis, diversity and evolution of two KIR haplotypes A and B. Gene 335:121–131

    PubMed  CAS  Google Scholar 

  35. Hsu KC, Chida S, Geraghty DE et al (2002) The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol Rev 190:40–52

    PubMed  CAS  Google Scholar 

  36. Martin MP, Single RM, Wilson MJ et al (2008) KIR haplotypes defined by segregation analysis in 59 Centre d’Etude Polymorphisme Humain (CEPH) families. Immunogenetics 60:767–774

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Maxwell LD, Wallace A, Middleton D et al (2002) A common KIR2DS4 deletion variant in the human that predicts a soluble KIR molecule analogous to the KIR1D molecule observed in the rhesus monkey. Tissue Antigens 60:254–258

    PubMed  CAS  Google Scholar 

  38. Bashirova AA, Martin MP, McVicar DW et al (2006) The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu Rev Genomics Hum Genet 7:277–300

    PubMed  CAS  Google Scholar 

  39. Hiby SE, Regan L, Lo W et al (2008) Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum Reprod 23:972–976

    PubMed  CAS  Google Scholar 

  40. Yawata M, Yawata N, McQueen KL et al (2002) Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression. Immunogenetics 54:543–550

    PubMed  Google Scholar 

  41. Toneva M, Lepage V, Lafay G et al (2001) Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens 57:358–362

    PubMed  CAS  Google Scholar 

  42. Yawata M, Yawata N, Abi-Rached L et al (2002) Variation within the human killer cell immunoglobulin-like receptor (KIR) gene family. Crit Rev Immunol 22:463–482

    PubMed  CAS  Google Scholar 

  43. Gendzekhadze K, Norman PJ, Abi-Rached L et al (2009) Co-evolution of KIR2DL3 with HLA-C in a human population retaining minimal essential diversity of KIR and HLA class I ligands. Proc Natl Acad Sci USA 106:18692–18697

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Parham P (2008) The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol 20:311–316

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Jiang W, Johnson C, Jayaraman J et al (2012) Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res 22:1845–1854

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Pyo CW, Guethlein LA, Vu Q et al (2010) Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus. PLoS One 5:e15115

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Martin MP, Bashirova A, Traherne J et al (2003) Cutting edge: expansion of the KIR locus by unequal crossing over. J Immunol 171:2192–2195

    PubMed  CAS  Google Scholar 

  48. Uhrberg M (2005) The KIR gene family: life in the fast lane of evolution. Eur J Immunol 35:10–15

    PubMed  CAS  Google Scholar 

  49. Norman PJ, Abi-Rached L, Gendzekhadze K et al (2009) Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes. Genome Res 19:757–769

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Traherne JA, Martin M, Ward R et al (2010) Mechanisms of copy number variation and hybrid gene formation in the KIR immune gene complex. Hum Mol Genet 19:737–751

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Husain Z, Alper CA, Yunis EJ et al (2002) Complex expression of natural killer receptor genes in single natural killer cells. Immunology 106:373–380

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Leung W, Iyengar R, Triplett B et al (2005) Comparison of killer Ig-like receptor genotyping and phenotyping for selection of allogeneic blood stem cell donors. J Immunol 174:6540–6545

    PubMed  CAS  Google Scholar 

  53. Denis L, Gagne K, Gueglio B et al (2005) NK-KIR transcript kinetics correlate with acute graft-versus-host disease occurrence after allogeneic bone marrow transplantation. Hum Immunol 66:447–459

    PubMed  CAS  Google Scholar 

  54. Alves LG, Rajalingam R, Canavez F (2009) A novel real-time PCR method for KIR genotyping. Tissue Antigens 73:188–191

    PubMed  CAS  Google Scholar 

  55. Koehler RN, Walsh AM, Moqueet N et al (2009) High-throughput genotyping of KIR2DL2/L3, KIR3DL1/S1, and their HLA class I ligands using real-time PCR. Tissue Antigens 74:73–80

    PubMed  CAS  Google Scholar 

  56. Hong HA, Loubser AS, de Assis Rosa D et al (2011) Killer-cell immunoglobulin-like receptor genotyping and HLA killer-cell immunoglobulin-like receptor-ligand identification by real-time polymerase chain reaction. Tissue Antigens 78:185–194

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Houtchens KA, Nichols RJ, Ladner MB et al (2007) High-throughput killer cell immunoglobulin-like receptor genotyping by MALDI-TOF mass spectrometry with discovery of novel alleles. Immunogenetics 59:525–537

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Chainonthee W, Böttcher G, Gagne K et al (2010) Improved KIR gene and HLA-C KIR ligand sequence-specific primer polymerase chain reaction genotyping using whole genome amplification. Tissue Antigens 76:135–143

    PubMed  CAS  Google Scholar 

  59. Khan F, Liacini A, Arora E et al (2012) Assessment of fidelity and utility of the whole-genome amplification for the clinical tests offered in a histocompatibility and immunogenetics laboratory. Tissue Antigens 79:372–379

    PubMed  CAS  Google Scholar 

  60. Ndlovu BG, Danaviah S, Moodley E et al (2012) Use of dried blood spots for the determination of genetic variation of interleukin-10, killer immunoglobulin-like receptor and HLA class I genes. Tissue Antigens 79:114–122

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Ordóñez D, Moraru M, Gómez-Lozano N et al (2012) KIR typing by non-sequencing methods: polymerase-chain reaction with sequence-specific primers. Methods Mol Biol 882:415–430

    PubMed  Google Scholar 

  62. Petersdorf EW, Malkki M, Hsu K et al (2013) 16th IHIW: international histocompatibility working group in hematopoietic cell transplantation. Int J Immunogenet 40:2–10

    PubMed  CAS  Google Scholar 

  63. Ashouri E, Ghaderi A, Reed EF et al (2009) A novel duplex SSP-PCR typing method for KIR gene profiling. Tissue Antigens 74:62–67

    PubMed  CAS  Google Scholar 

  64. Sun JY, Gaidulis L, Miller MM et al (2004) Development of a multiplex PCR-SSP method for Killer-cell immunoglobulin-like receptor genotyping. Tissue Antigens 64:462–468

    PubMed  CAS  Google Scholar 

  65. Tajik N, Shahsavar F, Nasiri M et al (2010) Compound KIR-HLA genotype analyses in the Iranian population by a novel PCR-SSP assay. Int J Immunogenet 37:159–168

    PubMed  CAS  Google Scholar 

  66. Kulkarni S, Martin MP, Carrington M (2010) KIR genotyping by multiplex PCR-SSP. Methods Mol Biol 612:365–375

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Abalos AT, Eggers R, Hogan M et al (2011) Design and validation of a multiplex specific primer-directed polymerase chain reaction assay for killer-cell immunoglobulin-like receptor genetic profiling. Tissue Antigens 77:143–148

    PubMed  CAS  Google Scholar 

  68. Crum KA, Logue SE, Curran MD et al (2000) Development of a PCR-SSOP approach capable of defining the natural killer cell inhibitory receptor (KIR) gene sequence repertoires. Tissue Antigens 56:313–326

    PubMed  CAS  Google Scholar 

  69. Cook MA, Norman PJ, Curran MD et al (2003) A multi-laboratory characterization of the KIR genotypes of 10th International Histocompatibility Workshop cell lines. Hum Immunol 64:567–571

    PubMed  CAS  Google Scholar 

  70. Nong T, Saito K, Blair L et al (2007) KIR genotyping by reverse sequence-specific oligonucleotide methodology. Tissue Antigens 69:92–95

    PubMed  CAS  Google Scholar 

  71. Park HJ, Oh Y, Kang HJ et al (2011) A gene-specific primer extension and liquid bead array system for killer-cell immunoglobulin-like receptor genotyping. Tissue Antigens 77:251–256

    PubMed  CAS  Google Scholar 

  72. Hsu KC, Liu XR, Selvakumar A et al (2002) Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol 169:5118–5129

    PubMed  Google Scholar 

  73. Gourraud PA, Gagne K, Bignon JD et al (2007) Preliminary analysis of a KIR haplotype estimation algorithm: a simulation study. Tissue Antigens 69(Suppl 1):96–100

    PubMed  Google Scholar 

  74. Hollenbach JA, Meenagh A, Sleator C et al (2010) Report from the killer immunoglobulin-like receptor (KIR) anthropology component of the 15th International Histocompatibility Workshop: worldwide variation in the KIR loci and further evidence for the co-evolution of KIR and HLA. Tissue Antigens 76:9–17

    PubMed  CAS  Google Scholar 

  75. Sanchez-Mazas A, Fernandez-Viña M, Middleton D et al (2011) Immunogenetics as a tool in anthropological studies. Immunology 133:143–164

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Gendzekhadze K, Norman PJ, Abi-Rached L et al (2006) High KIR diversity in Amerindians is maintained using few gene-content haplotypes. Immunogenetics 58:474–480

    PubMed  Google Scholar 

  77. Mullighan CG, Petersdorf EW (2006) Genomic polymorphism and allogeneic hematopoietic transplantation outcome. Biol Blood Marrow Transplant 12:19–27

    PubMed  Google Scholar 

  78. Beksaç M, Dalva K (2012) Role of killer immunoglobulin-like receptor and ligand matching in donor selection. Bone Marrow Res 2012: article ID 271695, 6 pages

    Google Scholar 

  79. Villard J (2011) The role of natural killer cells in human solid organ and tissue transplantation. J Innate Immun 3:395–402

    PubMed  Google Scholar 

  80. Martin MP, Carrington M (2008) KIR locus polymorphisms: genotyping and disease association analysis. Methods Mol Biol 415:49–64

    PubMed  CAS  Google Scholar 

  81. Shilling HG, Guethlein LA, Cheng NW et al (2002) Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J Immunol 168:2307–2315

    PubMed  CAS  Google Scholar 

  82. Norman PJ, Abi-Rached L, Gendzekhadze K et al (2007) Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans. Nat Genet 39:1092–1099

    PubMed  CAS  Google Scholar 

  83. Sun JY, Oki A, Senitzer D (2008) Alleles and intron polymorphism of KIR3DL1 shown by combination of allele group-specific primers and sequencing. Tissue Antigens 72:578–580

    PubMed  CAS  Google Scholar 

  84. Gardiner CM, Guethlein LA, Shilling HG et al (2001) Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J Immunol 166:2992–3001

    PubMed  CAS  Google Scholar 

  85. Vierra-Green C, Roe D, Hou L et al (2012) Allele-level haplotype frequencies and pairwise linkage disequilibrium for 14 KIR loci in 506 European-American individuals. PLoS One 7:e47491

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Halfpenny IA, Middleton D, Barnett YA et al (2004) Investigation of killer cell immunoglobulin-like receptor gene diversity: IV. KIR3DL1/S1. Hum Immunol 65:602–612

    PubMed  CAS  Google Scholar 

  87. Maxwell LD, Williams F, Gilmore P et al (2004) Investigation of killer cell immunoglobulin-like receptor gene diversity: II. KIR2DS4. Hum Immunol 65:613–621

    PubMed  CAS  Google Scholar 

  88. Williams F, Meenagh A, Sleator C et al (2004) Investigation of killer cell immunoglobulin-like receptor gene diversity: I. KIR2DL4. Hum Immunol 65:31–38

    PubMed  CAS  Google Scholar 

  89. Gonzalez A, Meenagh A, Sleator C et al (2008) Investigation of killer cell immunoglobulin-like receptor (KIR) gene diversity: KIR2DL2, KIR2DL5 and KIR2DS5. Tissue Antigens 72:11–20

    PubMed  CAS  Google Scholar 

  90. Bari R, Leung M, Turner VE et al (2011) Molecular determinant-based typing of KIR alleles and KIR ligands. Clin Immunol 138:274–281

    PubMed  CAS  Google Scholar 

  91. Gonzalez A, McErlean C, Meenagh A et al (2009) Killer cell immunoglobulin-like receptor allele discrimination by high-resolution melting. Hum Immunol 70:858–863

    PubMed  CAS  Google Scholar 

  92. Thananchai H, Gillespie G, Martin MP et al (2007) Cutting edge: allele-specific and peptide-dependent interactions between KIR3DL1 and HLA-A and HLA-B. J Immunol 178:33–37

    PubMed  CAS  Google Scholar 

  93. Roberts CH, Turino C, Madrigal JA et al (2007) Enrichment of individual KIR2DL4 sequences from genomic DNA using long-template PCR and allele-specific hybridization to magnetic bead-bound oligonucleotide probes. Tissue Antigens 69:597–601

    PubMed  CAS  Google Scholar 

  94. Roberts CH, Madrigal JA, Marsh SG (2007) Cloning and sequencing alleles of the KIR2DL4 gene from genomic DNA samples. Tissue Antigens 69:88–91

    PubMed  CAS  Google Scholar 

  95. Du Z, Sharma SK, Spellman S et al (2008) KIR2DL5 alleles mark certain combination of activating KIR genes. Genes Immun 9:470–480

    PubMed  CAS  Google Scholar 

  96. Schellekens J, Tilanus MG, Rozemuller EH (2008) The elucidation of KIR2DL4 gene polymorphism. Mol Immunol 45:1900–1906

    PubMed  CAS  Google Scholar 

  97. Hou L, Chen M, Steiner N et al (2012) Killer cell immunoglobulin-like receptors (KIR) typing by DNA sequencing. Methods Mol Biol 882:431–468

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Witt CS, Martin A, Christiansen FT (2000) Detection of KIR2DL4 alleles by sequencing and SSCP reveals a common allele with a shortened cytoplasmic tail. Tissue Antigens 56:248–257

    PubMed  CAS  Google Scholar 

  99. Yawata M, Yawata N, Draghi M et al (2006) Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 203:633–645

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Robinson J, Mistry K, McWilliam H et al (2010) IPD—the Immuno Polymorphism Database. Nucleic Acids Res 38:D863–D869

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Carr WH, Pando MJ, Parham P (2005) KIR3DL1 polymorphisms that affect NK cell inhibition by HLA-Bw4 ligand. J Immunol 175:5222–5229

    PubMed  CAS  Google Scholar 

  102. O’Connor GM, Guinan KJ, Cunningham RT et al (2007) Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells. J Immunol 178:235–241

    PubMed  Google Scholar 

  103. Kikuchi-Maki A, Yusa S, Catina TL et al (2003) KIR2DL4 is an IL-2-regulated NK cell receptor that exhibits limited expression in humans but triggers strong IFN-gamma production. J Immunol 171:3415–3425

    PubMed  CAS  Google Scholar 

  104. Martin MP, Pascal V, Yeager M et al (2007) A mutation in KIR3DS1 that results in truncation and lack of cell surface expression. Immunogenetics 59:823–881

    PubMed  CAS  Google Scholar 

  105. Moretta A, Tambussi G, Bottino C et al (1990) A novel surface antigen expressed by a subset of human CD3–CD16+ natural killer cells. Role in cell activation and regulation of cytolytic function. J Exp Med 171:695–714

    PubMed  CAS  Google Scholar 

  106. Shilling HG, Young N, Guethlein LA et al (2002) Genetic control of human NK cell repertoire. J Immunol 169:239–247

    PubMed  CAS  Google Scholar 

  107. Rajagopalan S, Long EO (1999) A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 189:1093–1100

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Goodridge JP, Witt CS, Christiansen FT et al (2003) KIR2DL4 (CD158d) genotype influences expression and function in NK cells. J Immunol 171:1768–1774

    PubMed  CAS  Google Scholar 

  109. Torkar M, Norgate Z, Colonna M et al (1998) Isotypic variation of novel immunoglobulin-like transcript/killer cell inhibitory receptor loci in the leukocyte receptor complex. Eur J Immunol 28:3959–3967

    PubMed  CAS  Google Scholar 

  110. Long EO, Barber DF, Burshtyn DN et al (2001) Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunol Rev 181:223–233

    PubMed  CAS  Google Scholar 

  111. Andersson S, Fauriat C, Malmberg JA et al (2009) KIR acquisition probabilities are independent of self-HLA class I ligands and increase with cellular KIR expression. Blood 114:95–104

    PubMed  CAS  Google Scholar 

  112. Santourlidis S, Trompeter HI, Weinhold S et al (2002) Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol 169:4253–4261

    PubMed  CAS  Google Scholar 

  113. Chan HW, Kurago ZB, Stewart CA et al (2003) DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J Exp Med 197:245–255

    PubMed Central  PubMed  Google Scholar 

  114. Trompeter HI, Gomez-Lozano N, Santourlidis S et al (2005) Three structurally and functionally divergent kinds of promoters regulate expression of clonally distributed killer cell Ig-like receptors (KIR), of KIR2DL4, and of KIR3DL3. J Immunol 174:4135–4143

    PubMed  CAS  Google Scholar 

  115. Colonna M, Borsellino G, Falco M et al (1993) HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc Natl Acad Sci USA 90:12000–12004

    PubMed Central  PubMed  CAS  Google Scholar 

  116. Moretta A, Vitale M, Bottino C et al (1993) P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J Exp Med 178:597–604

    PubMed  CAS  Google Scholar 

  117. Robinson J, Halliwell JA, McWilliam H et al (2013) The IMGT/HLA database. Nucleic Acids Res 41:D1222–D1227

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Wagtmann N, Rajagopalan S, Winter CC et al (1995) Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity 3:801–809

    PubMed  CAS  Google Scholar 

  119. Moesta AK, Norman PJ, Yawata M et al (2008) Synergistic polymorphism at two positions distal to the ligand-binding site makes KIR2DL2 a stronger receptor for HLA-C than KIR2DL3. J Immunol 180:3969–3979

    PubMed  CAS  Google Scholar 

  120. Winter CC, Long EO (1997) A single amino acid in the p58 killer cell inhibitory receptor controls the ability of natural killer cells to discriminate between the two groups of HLA-C allotypes. J Immunol 158:4026–4028

    PubMed  CAS  Google Scholar 

  121. Cella M, Longo A, Ferrara GB et al (1994) NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J Exp Med 180:1235–1242

    PubMed  CAS  Google Scholar 

  122. Dohring C, Scheidegger D, Samaridis J et al (1996) A human killer inhibitory receptor specific for HLA-A1,2. J Immunol 156:3098–3101

    PubMed  CAS  Google Scholar 

  123. Hansasuta P, Dong T, Thananchai H et al (2004) Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur J Immunol 34:1673–1679

    PubMed  CAS  Google Scholar 

  124. Moffett-King A (2002) Natural killer cells and pregnancy. Nat Rev Immunol 2:656–663

    PubMed  CAS  Google Scholar 

  125. Biassoni R, Pessino A, Malaspina A et al (1997) Role of amino acid position 70 in the binding affinity of p50.1 and p58.1 receptors for HLA-Cw4 molecules. Eur J Immunol 27:3095–3099

    PubMed  CAS  Google Scholar 

  126. Stewart CA, Laugier-Anfossi F, Vely F et al (2005) Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci USA 102:13224–13229

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Graef T, Moesta AK, Norman PJ et al (2009) KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J Exp Med 206:2557–2572

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6:520–531

    PubMed  CAS  Google Scholar 

  129. Anfossi N, Andre P, Guia S et al (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342

    PubMed  CAS  Google Scholar 

  130. Kim S, Sunwoo JB, Yang L et al (2008) HLA alleles determine differences in human natural killer cell responsiveness and potency. Proc Natl Acad Sci USA 105:3053–3058

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Braud VM, Allan DS, O’Callaghan CA et al (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799

    PubMed  CAS  Google Scholar 

  132. Fauriat C, Andersson S, Bjorklund AT et al (2008) Estimation of the size of the alloreactive NK cell repertoire: studies in individuals homozygous for the group A KIR haplotype. J Immunol 181:6010–6019

    PubMed  CAS  Google Scholar 

  133. Imai K, Matsuyama S, Miyake S et al (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356:1795–1799

    PubMed  CAS  Google Scholar 

  134. D’Andrea A, Chang C, Franz-Bacon K et al (1995) Molecular cloning of NKB1. A natural killer cell receptor for HLA-B allotypes. J Immunol 155:2306–2310

    PubMed  Google Scholar 

  135. Colonna M, Samaridis J (1995) Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268:405–408

    PubMed  CAS  Google Scholar 

  136. Wagtmann N, Biassoni R, Cantoni C et al (1995) Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2:439–449

    PubMed  CAS  Google Scholar 

  137. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    PubMed  CAS  Google Scholar 

  138. Leung W (2011) Use of NK cell activity in cure by transplant. Br J Haematol 155:14–29

    PubMed  CAS  Google Scholar 

  139. Pegram HJ, Ritchie DS, Smyth MJ et al (2011) Alloreactive natural killer cells in hematopoietic stem cell transplantation. Leuk Res 35:14–21

    PubMed  CAS  Google Scholar 

  140. Davies SM, Ruggieri L, DeFor T et al (2002) Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood 100:3825–3827

    PubMed  CAS  Google Scholar 

  141. Lowe EJ, Turner V, Handgretinger R et al (2003) T-cell alloreactivity dominates natural killer cell alloreactivity in minimally T-cell-depleted HLA-non-identical paediatric bone marrow transplantation. Br J Haematol 123:323–326

    PubMed  Google Scholar 

  142. Bishara A, De Santis D, Witt CC et al (2004) The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens 63:204–211

    PubMed  CAS  Google Scholar 

  143. Nguyen S, Kuentz M, Vernant JP et al (2008) Involvement of mature donor T cells in the NK cell reconstitution after haploidentical hematopoietic stem-cell transplantation. Leukemia 22:344–352

    PubMed  CAS  Google Scholar 

  144. Cooley S, Weisdorf DJ, Guethlein LA et al (2010) Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 116:2411–2419

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Cooley S, Trachtenberg E, Bergemann TL et al (2009) Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood 113:726–732

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Hsu KC, Keever-Taylor CA, Wilton A et al (2005) Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105:4878–4884

    PubMed Central  PubMed  CAS  Google Scholar 

  147. Willemze R, Rodrigues CA, Labopin M et al (2009) KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia 23:492–500

    PubMed  CAS  Google Scholar 

  148. Hsu KC, Gooley T, Malkki M et al (2006) KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant 12:828–836

    PubMed  CAS  Google Scholar 

  149. Leung W, Iyengar R, Turner V et al (2004) Determinants of antileukemia effects of allogeneic NK cells. J Immunol 172:644–650

    PubMed  CAS  Google Scholar 

  150. Gagne K, Brizard G, Gueglio B et al (2002) Relevance of KIR gene polymorphisms in bone marrow transplantation outcome. Hum Immunol 63:271–280

    PubMed  CAS  Google Scholar 

  151. Venstrom JM, Pittari G, Gooley TA et al (2012) HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med 367:805–816

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Schellekens, J., Gagne, K., Marsh, S.G.E. (2014). Natural Killer Cells and Killer-Cell Immunoglobulin-Like Receptor Polymorphisms: Their Role in Hematopoietic Stem Cell Transplantation. In: Beksaç, M. (eds) Bone Marrow and Stem Cell Transplantation. Methods in Molecular Biology, vol 1109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9437-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9437-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9436-2

  • Online ISBN: 978-1-4614-9437-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics